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I (Review) Lecture 1: Some category theory

Several people said they wanted to learn basic category theory. We already
needed to review some category theory for this seminar, so we’ll take the
opportunity to review enough theory to hopefully help everyone.

The short-term plan is to review some category theory, Grothendieck
sites, and sheaves. Then we will start actually talking about condensed
things. I only reluctantly call this “review," since we are not assuming ev-
eryone is familiar with all the material moving forward. The goal is only to
catch folks up to a working knowledge.

Probably everything we say here is said better somewhere in Emily
Riehl’s Category Theory in Context. That book also has many examples. You
should read it.

Definition I.1. A category C consists of the following data.

(1) A collection Ob(C) we call objects.

(2) A collection Mor(C) we call morphisms.

(3) For each morphism f , a source and target object. (We write f : X →
Y to express that f is a morphism with source X and target Y .)

(4) For each object X, a distinguished morphism idX : X → X we call
the identity morphism.

(5) For each pair of morphisms f : X → Y, g : Y → Z such that
target(f) = source(g), a distinguished morphism gf : X → Z we
call the composite morphism.

And this data must satisfy the following properties.

• Given a morphism f : X → Y , we have f = idY f = f idG.

• Given morphisms f, g, h, we have (fg)h = f(gh) (when the source/targets
match appropriately).

In practice, we think of categories as “like a collection of objects and maps
between them, with all the structure that should accompany the word
maps—identity self-maps, composites, associativity."
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I.1 Examples of categories

(See Riehl for more)

Example I.2. The category of sets Set has sets as objects and functions
as morphisms. The rest of the structure is “obvious": source/target is do-
main/range, the composition of morphisms is defined as the composition
of functions, and identity morphisms are the identity functions.

Example I.3. The category of spaces Top has topological spaces as objects
and continuous maps as morphisms. Again, the rest of the structure is “ob-
vious."

Example I.4. Define the category Top∗ to have based spaces1 as objects and
based maps2 as morphisms.

Example I.5. Define the category Grp to have groups as objects and homo-
morphisms as morphisms.

Example I.6. Define the category Ab to have abelian groups as objects and
homomorphisms as morphisms.

Example I.7. Denote by k a field (e.g., k = R). Define the category V ectk
to have k-vector fields as objects and k-linear maps as morphisms.

Example I.8 (Morphisms do not have to be functions!). Define a category
Naturals to have

• As objects, the natural numbers Ob(Naturals) := {0, 1, 2, . . . }; and

• A morphism a→ b for each pair of numbers (a, b) such that a ≤ b.

Thus, given objects a, b ∈ {0, 1, 2, . . . }, there is at most one arrow a → b,
and it exists iff a ≤ b.

Example I.9 (Morphisms do not have to be functions!). Define a category
Skel(FinSetiso) to have

• Natural numbers n as objects; and

• A morphism n→ n for each element of the symmetric group Σn, and
no morphisms m→ n when m ̸= n.

1A based space is pair (X,x) where X is a space and x ∈ X.
2A based map f : (X,x)→ (Y, y) is a continuous map f : X → Y such that f(x) = y.
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Example I.10 (Example from Peter’s talk). A poset is a set S with a relation
≤ that is reflexive, transitive, and antisymmetric. A morphism of posets f :
(S,≤)→ (S ′,≤′) is a function f : S → S ′ that respects the partial orderings,
i.e. x ≤ y ⇐⇒ f(x) ≤′ f(y). We denote by Poset the category of posets
and morphisms of posets.

I.2 Isomorphisms

All sorts of objects—groups, rings, sets, spaces—have a notion of “same-
ness." In an arbitrary category, we formalize this notion as isomorphisms.

Definition I.11. Let C be a category. Suppose that f : c→ c′ is a morphism
and that there exists a morphism g : c′ → c such that fg = idc′ and gf = idc.
Then we say f and g are isomorphisms and we say that c, c′ are isomorphic.

Example I.12. Isomorphisms in Set are bijections. Isomorphisms in Top
are homeomorphisms. Isomorphisms in Top∗ are based homeomorphisms.
Isomorphisms in Grp and Ab are group isomorphisms.

Exercise: Figure out what the isomorphisms in Poset are.

I.3 Functors

Definition I.13. Let C,D be categories. A functor from C to D (which we
write F : C → D) is “a map of objects and morphisms that preserves cate-
gorical structure, i.e. sources, targets, composites, and identities." Formally,
it consists of the following data.

(1) An object FX ∈ D for each object X ∈ C.

(2) For each morphism f : X → Y in C, a morphism Ff : FX → FY in
D.

And this data must satisfy the following properties.

• For any pair of composable morphisms f, g in C, we have F (gf) =
F (g)F (f).

• For any identity morphism idX in C, we have F (idX) = idFX .
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Very often, we say “(one type of object) are the same thing as (another
type of objects)." Categories give us a great, concrete way to talk about
“types of objects." Functors give us a way to “modify and compare" objects
of different types. Can functors tell us when (one type of object) are “the
same thing as" (another type)? Yes, and this is a very useful notion.

For the following definition, we will denote by Mor(X, Y ) the set of
morphisms X → Y between objects X, Y ∈ C.

Definition I.14. Let C,D be categories. An equivalence of categories is a
functor F : C→ D that is

1. Full: for every pair of objects X, Y ∈ C, the mapping f 7→ F (f)
defines a surjection Mor(X, Y )→Mor(FX,FY );

2. Faithful: for every pair of objects X, Y ∈ C, the mapping f 7→ F (f)
defines an injection Mor(X, Y )→Mor(FX,FY ); and

3. Essentially surjective: for every object d ∈ D, there exists some c ∈ C
such that Fc ∼= d.

Remark I.15. The analogy is, “full and faithful is like injectivity" and “es-
sentially surjective is like surjectivity." If you have both, you have an isomor-
phism. Note that a full and faithful functor need not actually be surjective
on objects.

Remark I.16. There are other common, equivalent definitions of an equiv-
alence of categories.

I.4 Examples of functors

(see also Riehl, p. 13)

Example I.17. Let C denote one of the categories Top, Grp,Ab, or V ectk.
We can define a functor U : C→ Set by mapping objects to their underlying
sets and morphisms to their underlying set-maps. We call U the forgetful
functor. (We generally refer to any functor that “tosses out" structure, e.g.
a topology on a set, as a forgetful functor.)

Example I.18. If C is any category, then we can form its opposite cate-
gory Cop to have the same objects but with “flipped arrows," i.e. swapped
source/targets of C’s morphisms. There is a functor C → Cop that takes
objects to themselves and morphisms to their “flip."
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Exercise: prove that (Cop)op is equivalent to C.

Example I.19. For V ∈ V ectk, recall that its dual is defined as the vector
space V ∗ := {linear maps V → k}. Given a linear map f : V → W , there is
induced a map f ∗ : W ∗ → V ∗ that sends v : W → k to v ◦ f : V → k. The
mapping V 7→ V ∗, f 7→ f ∗ defines the dualization functor (−)∗ : V ectk →
V ectopk .

Remark I.20. You have heard probably heard that we have an isomorphism
V ∼= V ∗∗ that is “canonical" or “natural" or “very nice," but that we do not
have such an isomorphism V ∼= V ∗. (Although the two are isomorphic.)
This can be expressed very concretely as a statement about the functor (−)∗
and its self-composite (−)∗∗. We do not yet have the language for this (nat-
ural transformations); the non-categorical reason is that an isomorphism
V ∼= V ∗ requires a choice of basis, but there is an isomorphism V ∼= V ∗∗

that does not need any choice.

Many—and historically, the motivating—examples of functors come
from algebraic topology.

Example I.21. Let (X, x) be a based space (i.e., X is a space and x ∈ X).
We define the fundamental group π1(X, x) as the set of based continuous
maps ℓ : [0, 1] → X such that ℓ(0) = ℓ(1) = x, modulo homotopy equiv-
alence. The group structure is loop concatenation: given ℓ, ℓ′ : [0, 1] → X,
define ℓ′ℓ : [0, 1] → X to do one loop over [0.5] then the other over
[0.5, 1]. Given a based map f : (X, x) → (Y, y), there is induced a map
f∗ : π1X → π1Y given by ℓ 7→ f ◦ ℓ. This defines a functor

π1(−) : Top∗ → Grp.

Example I.22. For each n, singular homology defines a functor Hn(−) :
Top→ Ab. Similarly, singular cohomology defines a functor Hn(−) : Topop →
Ab.

I.5 Natural transformations

We often want to compare functors. This will help us explain why e.g. “an
arbitrary vector space is not naturally isomorphic to its dual" but “an arbi-
trary vector space is naturally isomorphic to its double-dual."

There are more serious examples where we *really* care about com-
parisons between functors. For example, the Hurewicz homomorphism from
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algebraic topology is a comparison hX : πn(X)→ Hn(X) for every space X.
But in fact, more can be said—for any continuous based map f : X → Y ,
the Hurewicz homomorphism satisfies hY ◦πn(f) = Hn(f)◦hX . (Here, πn(f)
and Hn(f) are the maps induced by f on pin and Hn.) This is a seriously
useful fact that is not “formally guaranteed" to be true. One might phrase
this as, “the Hurewicz homomorphism compares objects πn(X) → Hn(X)
in a way that respects how maps induce homomorphisms via the functors
πn(−), Hn(−)."

Natural transformations give a simple way to express this.

Definition I.23. Let F,G : C→ D be two functors. A natural transformation
from F to G, which we denote as α : F =⇒ G, is the data of

• For each object c ∈ C, a morphism αc : F (c)→ G(c) in D

such that for every morphism f : c→ c′ in C, one has G(f)◦αc = αc′ ◦F (f).
In other words, the following diagram commutes.

F (c) F (c′)

G(c) G(c′)

F (f)

G(f)

α′
cαc

It turns out, natural transformations can be composed!

Definition I.24. Let F,G,H : C→ D be three functors, and suppose we are
given two natural transformations η : F ⇒ G and ε : G ⇒ H. Define the
composition ε◦η whose component at some c ∈ C is given by (ε◦η)c := εc◦ηc.
Exercise I.25. Show that given natural transformations η : F ⇒ G and
ε : G → H, that the composition ε ◦ η as defined above is actually a nat-
ural transformation. In other words, verify that the naturality condition is
satisfied.

Exercise I.26. Show that given two categories C and D, you can define
the functor category Fun(C,D) (also sometimes denoted as [C,D] or DC)
whose objects are functors C→ D and whose morphisms are natural trans-
formations η : F ⇒ G.

You will need to check that:

• Given any functor F in Fun(C,D), there exists an identity natural
transformation IdF : F ⇒ F .

• Composition of natural transformations is both associative and unital
with respect to your identity transformations.
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II (Review) Lecture 2: More category theory

The first part of the talk on limits and colimits (sections 0.2.1 – 0.2.3 below)
will be given by Isaiah (who is also writing the notes for these sections).
If you have any questions about anything below, please do not hesitate to
reach out to me on discord, my username there is isaiahtx.

II.1 Reminder about natural transformations

First, I will review the definition of a natural transformation. If I have time,
at some point during the presentation I will introduce the idea of a category
associated to a preorder:

Definition II.1. A preorder is pair (P,≤) where P is a set and ≤ is a reflex-
ive and transitive relation on P , i.e., given x ∈ P , x ≤ x, and if x, y, z ∈ P
satisfy x ≤ y and y ≤ z, then x ≤ z.

Definition II.2. A preorder is a category such that there is at most one
morphism between any two objects.

Exercise II.3. Understand that the above two definitions are equivalent. In
other words, show that given a preorder defined as in Definition II.1 gives
rise to a preorder as defined in Definition II.2, and vice-versa.

II.2 Limits and colimits

Definition II.4. Let c be an object in a category C.
We say c is initial if, given any object c′ in C, there is a unique morphism

c→ c′.
Conversely, we say c is terminal if, given an object c′ in C, there is a

unique morphism c′ → c.

Definition II.5. Recall: an arrow f : x → y in a category C is called an
isomorphism if there exists an arrow g : y → x such that f ◦ g = idy

and g ◦ f = idx. We say two objects are isomorphic if there exists an
isomorphism between them.

Exercise II.6. Show that in a category C, given two initial objects c and c′,
there is a unique isomorphism c → c′. Similarly, terminal objects in C are
unique up to unique isomorphism. Thus, it makes sense to talk about the
initial/terminal object in a category.

Hint: If c and c′ are initial objects, there is a unique arrow c→ c′ and a
unique arrow c′ → c (why?). What can you say the compositions of these
arrows?
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Example II.7. In the category Set, the initial object is the empty set and
the terminal object is the singleton set.

Example II.8. In the categories Grp and Ab, the trivial group is both initial
and terminal.

Example II.9. Given a preorder P , the terminal object, if it exists, is called
the top object. The initial object is called the bottom object.

The top object is greater than or equal to every other object in the
preorder. The bottom object is less than or equal to every other object in
the preorder.

Given categories J and C, we often call a functor F : J → C a diagram
of shape J in C.

Definition II.10. Given two categories J and C and an object c in C, let
c : J → C denote the constant functor on c which sends every object in J to
c, and every morphism in J to the identity morphism idc on c.

Definition II.11. Let J be a small category, and F : J→ C be a functor.
A cone under F is a pair (λ, c), where c is an object in C and λ is a

natural transformation λ : F ⇒ c. We call c the nadir of the cone.
A cone over F is a pair (c, λ), where c is an object in C and λ is a natural

transformation λ : c⇒ F . We call c the summit or apex of the cone.

Explicitly, the data of a cone λ under F : J → C with nadir c is a
collection of morphisms λ : F (j) → c, indexed by the objects j in J, such
that for any morphism f : j → k in J, the following triangle commutes in C

Oftentimes, you will see the word “cocone” instead of “cone under F ”,
and in this context usually the word “cone” will refer explicitly to cones
over F .

F (j) F (k)

c

F (f)

λj λk

Dually, the data of a cone λ over F : J → C with apex c is a collection
of morphisms λj : c → F (j), indexed by objects j in J, such that for any
morphism f : j → k in J, the following triangle commutes in C

c

F (j) F (k)
F (f)

λj λk
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Typically, we think of limits and colimits of functors F : J → C when
J is a relatively “small” or “simple” category. Maybe J looks something like
this

Then if (c, η) is a cone under F , we have the following image in C:

And if (η, c) is a cone over F , we have the following image in C:

Definition II.12. Given a diagram F of shape J in a category C (so a functor
F : J → C) and two cones (η, c) and (µ, d) under F , a morphism of cones
under F is a morphism f ∈ Mor(c, d) such that for all objects j in J, µj =
f ◦ ηj.

Pictorally, a morphism of cones under F connects the nadirs of the
cones.

Of course, we have a dual definition for cones over F , which connect
the apexes of cones. Can you draw a picture?

Definition II.13. Given a diagram F of shape J in a category C (so a functor
F : J→ C) and two cones (c, η) and (d, µ) over F , a morphism of cones over
F is a morphism f ∈ Mor(c, d) such that for all objects j in J, µj ◦ f = ηj.
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Definition II.14. Let F be a diagram of shape J in a category C.
Define ConeC(F ) to be the category whose objects are cones under F ,

and morphisms are morphisms of cones under F .
Conversely, define ConeC(F ) to be the category whose objects are cones

over F , and morphisms are morphisms of cones over F .

Definition II.15. Given a diagram F of shape J in a category C, the colimit
cone for F is the initial object in ConeC(F ) (if it exists).

If (η, c) is a colimit cone for F , then we call the object c the colimit of
F , and denote it by any of the following:

colim
J

F, colim−→F, or lim
−→

F

Definition II.16. Given a diagram F of shape J in a category C, the limit
cone for F is the terminal object in ConeC(F ) (if it exists).

If (c, η) is a limit cone for F , then we call the object c the limit of F ,
and denote it by any of the following:

lim
J

F or lim←−F

II.3 Examples of limits and colimits

I’ll take a moment to say something about category theory: the above defi-
nitions were quite technical and abstract. Like most definitions in category
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theory, the definition of the (co)limit cannot be internalized or understood
by reading it. You need to work through examples, preferably as many as
possible. Thankfully, you already know lots of examples of limits and col-
imits!

I am going to explicitly give an example of computing a colimit and a
limit in Set.

Example II.17. Let J be a category with n > 0 objects and no non-identity
morphisms. Then a functor F : J → C is the data of a choice of n objects
X1, . . . , Xn in C. Then the (co)limit of F is called the (co)product of the
Xi’s.

In Set, coproducts are disjoint unions and products are cartesian prod-
ucts of sets.

In Ab, the coproduct is given by direct sum, and the product is given by
the product of groups.

In Top, the coproduct is given by the disjoint union of spaces with the
disjoint union topology, while the product is given by the cartesian product
with the product topology.

In Top∗, the coproduct is given by the wedge product (join spaces at
their basepoint), while the product is the regular product in Top.

Example II.18. An equalizer is a limit of a diagram indexed by the parallel
pair, the category • ⇒ • with two objects and two parallel non-identity
morphisms between them.

Example II.19 (Limits in Set). In general, limits in Set can be described
completely as follows:

Given a diagram S : J→ Set, define the set

lim←−S := {(si)i ∈
∏
J

Si : ∀ϕ : i→ i′, (Sϕ)(si) = si′}.

One can check that this is a limit of F .

Example II.20 (Colimits in Set). Given a diagram S : J → Set, define the
set

colim−→S :=

(∐
J

Si

)
/(si ∼ si′ if ∃ϕ : (Sϕ)(si) = si′).

One can check that this is a colimit of F .

Example II.21 ((Co)limits in Top). Like Set, the category Top is also com-
plete and cocomplete. A limit in Top is formed by taking the limit of under-
lying sets and endowing it with the subspace topology. Likewise, a colimit
in Top is formed by taking the colimit of underlying sets and endowing it
with the quotient topology.
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II.4 The Hom functor

Let X, Y be objects in C. We consider the set

HomC(X, Y )

of all morphisms X → Y in C. (When C is understood, we just write
Hom(X, Y ).) Given a morphism f : Y → Y ′, post-composition defines a
function f ◦ − : Hom(X, Y )→ Hom(X, Y ′). Given a morphism g : X → X ′,
pre-composition defines a function − ◦ g : Hom(X ′, Y ) → Hom(X, Y ). No-
tice that this map goes the “other way."

This describes two important functors.

Definition II.22. Let C be a category. For each c ∈ C, we define the covari-
ant Hom functor

HomC(c,−) : C→ Set.

Definition II.23. Let C be a category. For each c ∈ C, we define the con-
travariant Hom functor

HomC(−, c) : Cop → Set.

Exercise II.24. Think about the contravariant Hom functor.

Exercise II.25. In a category C, prove that a morphism f : X → Y is an
isomorphism ⇐⇒ for every object Z ∈ C, the morphism Hom(Z, f) :
Hom(Z,X) → Hom(Z, Y ) is an isomorphism. (I.e., iff the function f ◦ − is
a bijection.)

(Not totally essential part.) The two Hom functors fit together in such a
way that we can turn the co/contravariant Hom functors into a single Hom
functor. We mean the following.

Proposition II.26. If f : X → Y , g : X ′ → Y ′ are morphisms in C, then the
following diagram commutes.

HomC(X, Y ) HomC(X, Y ′)

HomC(X
′, Y ) HomC(X

′, Y ′)

Hom(X,g)

Hom(X′,g)

Hom(f,Y ′)Hom(f,Y )

Thus, we have a functor HomC(−,−) : Cop × C→ Set.
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II.5 Adjunctions

There is a notion of adjunctions. The slogan is, “The slogan is, adjunctions
are everywhere." There are several equivalent definitions. None is “the best,"
they are very much so all useful. The idea is that two functors F : C ⇄ D : G
may “undo each other on the level of hom sets;" we make this precise.

Definition II.27. A hom-set adjunction is a pair of functors F : C ⇄ D : G
together with a natural isomorphism

Φ : HomD(F−,−) ∼= HomC(−, G−).

Definition II.28. A unit-counit adjunction is a pair of functors F : C ⇄ D :
G together with natural transformations η : idC =⇒ GF and ϵ : FG =⇒
idD such that the following diagrams commute (we call these the triangle
identities).

F FGF G GFG

F G

Fη

ϵF
idF

ηG

Gϵ
idG

Proposition II.29. Let (F,G,Φ) be a hom-set adjunction. Define its canonical
unit-counit structure as follows.

• For c ∈ C, we define the morphism ηc := Φc,F c(idFc); and

• For d ∈ D, we define the morphism ϵd := Φ−1
Gd,d(idGd).

The claim is that (F,G, η, ϵ) is a unit-counit adjunction, i.e. the ηc, ϵd’s assem-
ble to natural transformations satisfying the triangle identities.

Proposition II.30. Let (F,G, η, ϵ) be a unit-counit adjunction. Define its canon-
ical hom-set adjunction structure as follows. For each c ∈ C, d ∈ D, and
f ∈ HomD(Fc, d), define Φ(f) := ηc ◦ Gf ∈ HomC(c,Gd). The claim is that
(F,G,Φ) is a hom-set adjunction.

The last two propositions say that every hom-set adjunction gives rise
to a unit-counit adjunction and vice-versa.

Proposition II.31. Hom-set adjunctions are “the same thing as" unit-counit
adjunctions.
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Example II.32 (Cool example from Peter’s talk). We work in Top∗, the cate-
gory of based spaces.3 Given based spaces X, Y , we may ask for some based
space G(X, Y ) such that for every Z,

Hom(G(X, Y ), Z) ∼= Hom(X,Hom(Y, Z)). (33)

In this sense, G(X, Y ) “undoes" the functor “take the space of based maps
out of Y " on the level of hom-sets. In fact, such a based space G(X, Y )
exists for every X and Y , and the isomorphisms (32) are such that they
describe an adjunction. (In the language above, a hom-set adjunction.) The
space G(X, Y ) is the smash product of based spaces, defined as

G(X, Y ) = X ∧ Y := (X × Y )/(X ∨ Y ).

Precisely, the functors − ∧ Y : Top∗ → Top∗ and Hom(Y,−) : Top∗ → Top∗

are adjoint. Smashing with Y is left adjoint to homming out of Y .
This matters because if we take Y = S1, our adjoint functors specialize

to important constructions: given a space X, one has

Y ∧X = ΣX and Hom(Y,X) = ΩX.

The spaces ΣX,ΩX are called the suspension and loop space of X, respec-
tively. They are essential to doing algebraic topology and homotopy theory.
Then, being instances of functors which are adjoint, the adjunction tells us
that for any space W we get

Hom(ΣX,W ) ∼= Hom(X,ΩW )

and these isomorphisms are natural. I could go on about why this is great.

II.6 More Hom functor

Are hom-sets between (co)limits the (co)limits of hom-sets? The important
answer is yes, and we will be thinking about questions like this more later.

Proposition II.34. For every object X, the functors Hom(X,−) and Hom(−, X)
commute with limits. That is, if I→ C is a diagram in C and lim←−I

ci exists, then
for any object X one has

HomC(X, lim←−
I

ci) ∼= lim←−
I

HomC(X, ci) and

HomC(lim←−
I

ci, X) ∼= colim−→
I

HomC(ci, X).

3Objects are spaces with a chosen point (X,x0) and morphisms (X,x0) → (Y, y0) are
continuous maps f : X → Y such that f(x0) = y0.
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Proposition II.35. For every object X, the functors Hom(X,−) and Hom(−, X)
commute with colimits. (The precise statement of this is dual to that in the
previous proposition.)
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III (Review) Lecture 3: Sheaves on spaces

III.1 What is a sheaf?

Let X be a topological space.

Definition III.1. We let Open(X) be the category whose objects are open
subsets U ⊆ X, and where morphisms U → V are precisely inclusions
U ⊆ V.

In particular, between any two objects U and V , there are either exactly
0 maps between them (if U does not contain V ), or exactly 1 map U → V
(if U ⊆ V ).

As a category, this is not so interesting. It is introduced only to make
the following notions easier to define.

Definition III.2 (Presheaves). A presheaf on a topological space X is a
contravariant functor

F : Open(X)op → Ab,

for Ab the category of abelian groups.

Remark III.3. You can replace Ab by any category you like, and get a dif-
ferent notion of presheaf; we will focus primarily on presheaves valued in
abelian groups today, but other common use cases are presheaves valued
in the category of sets, or presheaves valued in the category of rings.

Example III.4. As one example of a presheaf, we define the sheaf of contin-
uous functions on a space X (this presheaf, as the name suggests, will turn
out to also be a sheaf).

It is the presheaf F on X given by

F(U) := {continuous functions ϕ : U → R}.

If U ⊆ V, then the map F(V ) → F(U) (recall that, in addition to
specifying abelian groups F(U), we also need to specify where our functor
maps morphisms!) is defined to be the restriction map

ϕ 7→ ϕ|U ,

where for ϕ : V → R, the function ϕ|U is just its restriction to U.

For a general presheaf F , we often call the map F(V ) → F(U) the
restriction from V to U, and we call elements of F(U) sections of F defined
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over U . We often abbreviate the restriction map F(V ) → F(U) by just
writing s|U , where s ∈ F(V ).

The definition of sheaf is intended to capture two very important gen-
eral properties of the sheaf of continuous functions.

Definition III.5. A sheaf on a space X is a presheaf F on X so that for
any open subset U of X, any open cover {Ui}i∈I of Ui, and any collection of
si ∈ F(Ui) so that

si|Ui∩Uj
= sj|Ui∩Uj

,

there exists a unique s ∈ F(U) so that, for each i,

s|Ui
= si.

Remark III.6. There are two parts to this notion: existence of glueings, and
uniqueness of glueings.

III.2 The categories of sheaves and presheaves

Definition III.7. A morphism of presheaves is just a natural transformation
of functors. A morphism of sheaves is just a morphism of the underlying
presheaves.

We write Psh(X), Sh(X) to denote the categories of presheaves and
sheaves on X.

There is a fully faithful forgetful functor

I : Sh(X)→ Psh(X),

since every sheaf is a presheaf.
There are some useful properties of the category of sheaves and presheaves.

Theorem III.8. The category Psh(X) of presheaves on X is complete and
cocomplete.

In fact, if Fi is a diagram of presheaves, then lim←−i
Fi is the presheaf(

lim←−
i

Fi

)
(U) := lim←−

i

Fi(U),

where the limit on the right is taken in the category of abelian groups. A
similar formula holds for colimits.
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Proof. Left to the reader; as a hint, construct a map

Hom(G, lim←−
i

Fi)→ lim←−
i

Hom(G,Fi)

(for lim←−i
Fi the sheaf defined in the theorem statement) and check it is both

injective and surjective; this proves our formula is actually the categorical
limit.

Our next step will be to prove that Sh(X) is complete and cocomplete.
First, we show completeness.

Theorem III.9. Let Fi be a diagram of sheaves. Then the presheaf limit(
lim←−
i

Fi

)
(U) := lim←−

i

Fi(U)

is a sheaf.

Proof. For this, it is useful to give a reformulation of the definition of sheaf.
Let F be a presheaf. Then F is a sheaf if and only if, for any open set U ⊆ X,
and any open cover {Uα}α∈A of U, the sequence of maps

0→ F(U)→
∏
α∈A

F(Uα)→
∏

α,β∈A

F(Uα ∩ Uβ)

is left exact, where the first map is just the product of the restriction maps,
and the second map sends (sα)α∈A to

(sα|Uα∩Uβ
− sβ|Uα∩Uβ

)α,β∈A.

Or equivalently, F is a sheaf if and only if the map

F(U)→ ker

(∏
α∈A

F(Uα)→
∏

α,β∈A

F(Uα ∩ Uβ

)
is always an isomorphism.

Since each Fi is a sheaf, the maps

Fi(U)→ ker

(∏
α∈A

Fi(Uα)→
∏

α,β∈A

Fi(Uα ∩ Uβ

)
are all isomorphisms. Take the limit of these diagrams over i, and so the
map

lim←−
i

Fi(U)→ lim←−
i

ker

(∏
α∈A

Fi(Uα)→
∏

α,β∈A

Fi(Uα ∩ Uβ

)
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is an isomorphism. Limits commute with limits; the kernel is a limit, and so
it commutes with lim←−i

. It also commutes with all the products, and hence
the above isomorphism can be rewritten as an isomorphism

lim←−
i

Fi(U)→ ker

(∏
α∈A

lim←−
i

Fi(Uα)→
∏

α,β∈A

lim←−
i

Fi(Uα ∩ Uβ

)
.

Thus lim←−i
Fi is a sheaf.

Corollary III.10. The category Sh(X) is complete.

Cocompleteness is harder. We state, without proof, a useful theorem.

Theorem III.11 (Sheafification). The fully faithful forgetful functor

I : Sh(X)→ Psh(X)

has a left adjoint functor

# : (X)→ Sh(X),

called sheafification.

Since I is fully faithful, this adjunction automatically obeys the property
that the morphism

F → F#

from a sheaf F into its sheafification is an isomorphism.

Theorem III.12. The category Sh(X) is cocomplete.

Proof. Let Fi be a diagram of sheaves, and let G be the presheaf colimit.
Then we claim that G# is the colimit of the Fi in the category of sheaves.
Indeed, for any sheaf F ′,

HomSh(X)(G#,F ′) = HomPsh(X)(G,F ′)

= lim←−
i

HomPsh(X)(Fi,F ′)

= lim←−
i

HomSh(X)(Fi,F ′),

and so G# is the colimit.

Warning III.13. The colimit of a family of presheaves is not computed as(
colim−→

i

Fi

)
(U) := colim−→

i

Fi(U),

in contrast to the case of limits. You have to use a sheafification procedure.
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III.3 The inverse and direct image functors

Definition III.14. Let f : X → Y be a continuous function of topological
spaces X, Y. Then we define the direct image functor

f∗ : Sh(X)→ Sh(Y )

and the inverse image functor

f−1 : Sh(Y )→ Sh(X)

as follows. The functor f∗ sends a sheaf F on X to

(f∗F)(V ) := F(f−1(V )),

and f−1 sends a sheaf G on Y to the sheafification of the presheaf

(f−1G)(U) := co lim−→
V⊆f(U)

G(V ).

Theorem III.15. The functors f−1, f∗ are an adjoint pair. Thus, for any F ∈
Sh(X),G ∈ Sh(Y ), we have

HomSh(X)(f
−1G,F) = HomSh(Y )(G, f∗F).

In particular, f−1 is right exact and f∗ is left exact.

Proof. Left to readers for time.

We now look at some particularly important examples of this construc-
tion.

III.4 Sections and constant sheaves

For any topological space X, there is a unique continuous map f : X → {∗},
for {∗} denoting the one point topological space.

The category Sh({∗}) is equivalent to to Ab, since a sheaf on a point is
just the value of its global sections on the entire space. Thus f−1, f∗ give us
functors

f−1 : Ab→ Sh(X)

and
f∗ : Sh(X)→ Ab.

The direct image is simple:

(f∗F)({∗}) = F(f−1({∗})) = F(X).

It has a special name and notation.
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Definition III.16. The global sections functor is the functor ΓX : Sh(X) →
Ab given by ΓX(F) = F(X).

The global sections functor has an adjoint f−1, which is called the con-
stant sheaf functor.

Definition III.17. Let A be an abelian group. Then the constant sheaf on A
is the sheaf A := f−1(A).

Remark III.18. As an exercise, prove that A(U) = A if U is connected.
What happens if U is disconnected?

Remark III.19. Since the global sections functor is a right adjoint, it com-
mutes with all limits. This gives a category theoretic explanation for why
the formula (

lim←−
i

Fi

)
(X) = Fi(X)

holds at the level of sheaves.
The global sections functor in general does not commute with colimits,

though, which is why it is difficult to describe the colimit of a diagram of
sheaves directly.

III.5 Restriction and extension

Let X be a topological space, U an open subset, and j : U → X the inclu-
sion.

Definition III.20. The functor j−1 : Sh(X) → Sh(U) is restriction to U .
Sometimes j−1F is written F|U .

It is easy to verify that

(j−1F)(V ) = F(V ).

III.6 Skyscraper sheaves and stalks

For any point x ∈ X, there is a continuous inclusion ix : {x} → X. This
gives us two functors

ix,∗ : Ab→ Sh(X),

i−1
x : Sh(X)→ Ab.
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Definition III.21. Let F be a sheaf on a space X. The stalk of F at x is the
abelian group

Fx = i−1
x (F) = colim−→

U∋x
F(U).

The stalk is an incredibly useful construction. Here are some properties
one should verify.

Definition III.22.

Check that the colimit definition of a stalk makes sense for presheaves, so
that it makes sense to talk about stalks.

A presheaf F and its sheafification F# have the same stalk at every point x.
If you know the construction of the sheafification functor, you can check this
directly – but you don’t need to know the construction of sheafification! Try
to prove this purely using categorical properties of stalks and sheafification.

If U ⊆ X is open and x ∈ U, then there is a natural map F(U) → Fx. If
s ∈ F(U), we write sx for the image of s under this natural map. (Hint:
remember the definition of colimit!)

Let F be a presheaf. Then the axiom of uniqueness of glueings in the def-
inition of sheaf is equivalent to saying that, for every section s ∈ F(U), if
sx = 0 for every x ∈ U, then s = 0.

Taking stalks commutes with limits and colimits.

If 0→ F ′ → F → F ′′ → 0 is a sequence of sheaves, then it is short exact if
and only if for every x ∈ X, the sequence 0→ F ′

x → Fx → F ′′
x → 0 is.

Use the previous point to prove that sheafification is exact.

Definition III.23. The skyscraper sheaf at a point x ∈ X with stalk A is the
sheaf ix,∗A.
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IV (Review) Lecture 4: Sheaves on sites

In 1949, Andre Weil (while he was a UChicago professor) proposed the Weil
conjectures, which propose a way of taking a system of equations defined
over Z, and relating the number of solutions to that system over a finite
field Fq to the topology of the complex solution set. Weil was able to prove
the Weil conjectures in a few special cases; most notably, Weil algebraized
a large amount of the modern theory of algebraic geometry of curves, so
that classical theorems for curves over R or C would apply to fields like Fq,
allowing him to give a proof of the Weil conjectures for curves.

As Weil proposed from the start, and as Serre made more precise in
1960 with his proof of the Kahler analogues of the Weil conjectures, the
ultimate difficulty in proving the Weil conjectures stems from being able to
define “Weil cohomology theories" – basically, a theory of cohomology for
algebraic varieties defined over fields like Fq.

Ultimately, Grothendieck defined etale cohomology to fulfill this dream.

IV.1 Sites

The central difficulty with giving a cohomology theory on algebraic vari-
eties over finite fields is that a finite topological space doesn’t have that
many open sets, and so if you just take an algebraic topologist’s cohomol-
ogy then you won’t get anything useful.

Grothendieck resolved this by extending the definition of cohomology.
We won’t talk about this generalized cohomology (yet! but later on in con-
densed math, we will need to), but the starting point is a generalization
of topological space, and a corresponding generalization of the notion of
sheaf.

Definition IV.1. Let C be a category. A Grothendieck topology on C is a
collection of distinguished families of morphisms sharing a common target,
called covering families (so, a covering family is the data of an object U ∈ C,
and a collection of morphisms {Ui → U}i∈I), obeying the following axioms,
analogous to the axioms for a topology.

Firstly, any isomorphism is always a covering family. This is in analogue
to how the entire set of a topological space is open.

Secondly, analogously to how an arbitrary union of opens is open, if
{Ui → U}i∈I is a covering family, and if for each i ∈ I we have a covering
family {Uji → Ui}ji∈Ji , then the family

{Uji → U}i∈I,ji∈Ji
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is a covering family of U.
Lastly, analogously to how finite intersections of open sets are open, we

need one more axiom. Firstly, the categorical analogue of the intersection
is something called the fiber product; if the reader doesn’t know what it is,
then it is given in the definition just below this one.

So, we require that C has all fiber products, and that if V → U is any
morphism, and {Ui → U}i∈I is any covering family, then {Ui×U V → V }i∈I
is a covering family as well.

Definition IV.2. If f1 : X1 → S and f2 : X2 → S are two morphisms, then
the fiber product of f1, f2 is the limit X1 ×S X2 of the diagram

X1 ×S X2 X1

X2 S

IV.2 Sheaves on a site

Definition IV.3. Let C be a site (that is, a category with a Grothendieck
topology). Then the category Psh(C) of presheaves on C is the category of
functors Cop → Set.

The category Sh(C) of sheaves on C is the full subcategory of C consisting
of presheaves F to that, for every covering family {Ui → U}i∈I , F(U) is the
equalizer of the two morphisms∏

i∈I

F(Ui)→
∏
i,j

∈ F(Ui ×U Uj).

(The two morphisms are

(si)i∈I 7→ (si|Ui×UUj
)i,j∈I ,

(si)i∈I 7→ (sj|Ui×UUj
)i,j∈I

obtained via the two natural maps Ui ×U Uj → Ui and Ui ×U Uj → Uj.)

The results of sheaf theory we established last time essentially go through
for the exact same abstract nonsense categorical reasons.
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IV.3 Weil conjectures

Instead of reproving the same theorems for sites, I want to spend some
time talking about why they were originally introduced: to solve the Weil
conjectures.

What are the Weil conjectures? I don’t want to be too precise, but ba-
sically they are a series of conjectures of the following form (although, the
actual ones are a little more general than what I am about to say).

Imagine we have a system of polynomial equations in some number of
variables, where the coefficients in the equations are all algebraic numbers,
so something like

y − x2 =
√
2.

This system of equations defines a complex algebraic variety, which has
(singular) cohomology groups, a very concrete topological invariant.

But over certain finite fields, the equation

y − x2 =
√
2

still makes sense (for instance, for p odd,
√
2 exists over either Fp or Fp2,

and so this equation still makes sense).
Over a finite field, there’s only some finite number of solutions to this

equation. You could take singular cohomology of this finite set (with its
Zariski topology), but the cohomology groups you get are essentially mean-
ingless.

Is there any sense in which the finite field remembers the cohomology
of the complex variety?

Weil found a miracle: it does! I want to look at an example which will be
very easy to count points for, but which might not be so convincing. There
was much more numerical evidence known to Weil (including a few special
cases of the Weil conjectures that Weil proved before he even formulated
the Weil conjectures, and the case of elliptic curves which was proven by
Hasse in 1933).

Look at Pn
Fq
, the projective space over Fq. Recall that the cohomology of

projective n-space over the complex numbers is given

H∗(Pn
C) = Z[α]

where |α| = 2. In other words, in even degrees, H2i(Pn
C) = Z for 0 ≤

i ≤ n, and H2i−1(Pn
C) = 0 in all odd degrees. There are many ways to

compute this, but probably the easiest is to note that Pn
C can be built up as

a CW complex built out of a one 0-cell, one 2-cell, ..., one 2n-cell. (Do the
example of a disk glued along its boundary is a sphere.)
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How many points are on Pn
Fq

? This is easy: it’s just

1 + q + · · ·+ qn.

Look at the analogy between how Pn
C is built out of one 0-cell, one

2-cell, etc.
The Weil conjectures predict that in general, the number of points de-

fined over Fq should be intimately related to the cohomology groups of the
corresponding complex algebraic variety. Specifically, Weil defines the zeta
function of a variety X over Fq as a certain exponential generating function
of the sequence |X(Fq)|, |X(Fq2)|, ..., and then conjectures that this gener-
ating function ζ should obey certain properties related to the topology of
the corresponding complex variety.

As another example, we consider the case of elliptic curves. An elliptic
curve X recall is a certain type of equation of the form

y2 = x3 + ax+ b.

Over the complex numbers, such equations correspond to genus 1 surfaces.
Over a finite field Fq, Hasse proved that the number of points on an

elliptic curve was of the form

|#X(Fq)− (q + 1)| ≤ 2
√
q.

How does this relate to topology? Well, over the complex numbers,

H0(X;Z) = Z,

H1(X;Z) = Z2.

H2(X;Z) = Z,

The Z,Z in the even terms give us the 1 + q, just like in the projective
space case the even cohomology gave us 1+ q+ · · ·+ qn. The Z2 in the odd
degree terms give us that

#X(Fq) = 1 + q + α + α,

where α is a complex number of absolute value
√
q. It’s easy to deduce the

Hasse bound from this.
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IV.4 Etale cohomology

So, it seems that varieties over finite fields can see shadows of the coho-
mology of the corresponding complex variety. Can one make this precise?

It turns out yes, via etale cohomology. Grothendieck had the insight that
the Zariski topology on a variety over a finite field failed to give enough
cohomology because it failed to have enough open sets. Grothendieck re-
placed it with the etale topology.

Basically, an etale morphism of varieties is the algebraic geometer’s ana-
logue of a ‘local diffeomorphism’ in differential topology. Some examples
of etale maps are covering maps and open inclusions, for instance.

Grothendieck defined the (small) etale site over a base scheme S to be
the category of all etale morphisms of schemes X → S (morphisms being
commuting triangles), endowed with the etale topology: an open cover in
this category is then just any collection of morphisms {ϕi : Xi → X} which
are jointly surjective.

Topoi give rise to notions of sheaves and cohomology theories. One of
the really cool useful results is the following comparison theorem: if X is a
smooth complex variety, then for any finite ring Λ,

H i
et(X,Λ) ∼= H i(X; Λ),

where the left hand side is etale cohomology with coefficients in the con-
stant sheaf associated to Λ, and the right hand side is singular cohomology.

So, the etale cohomology remembers the complex cohomoloy, at least
for finite coefficient rings! One can proceed to define the ℓ-adic cohomology
of X to be

H i
et(X,Zℓ) := lim←−

n

H i
et(X,Z/ℓnZ).

We remark that in general, the etale cohomology in the constant sheaf
Zℓ is NOT equal to the ℓ-adic cohomology we defined above. Very sad.

It would be nice if we could have etale cohomology with coefficients in
Z or Q, but it seems like the ℓ-adic ones are the best we can do.
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V Lecture 5: Condensed mathematics?

The “review lectures" are finished. Now, we are going to make a serious
move on condensed math. Although we still are not getting to “real con-
densed stuff" until next week. But let’s finally ask “why condensed math?"

Here are some very basic answers.

(1) A lesson going back to Grothendieck: we prefer good categories
with complicated objects over bad categories with familiar ob-
jects. Bad categories sometimes arise when we mix topology and al-
gebra. For instance, the category TopAb of topological abelian groups
is not abelian. Consider the following morphism in TopAb:

(R,discrete) ↪→ (R,Euclidean).

This map has trivial kernel and cokernel, but is not an isomorphism.
Condensed abelian groups fix this problem. (We will work out this
example shortly.)

(2) More broadly, the category Top is not particularly well-behaved. It
does not have an internal Hom is general, nor does it have any “ob-
vious" subcategory of generators. Condensed sets fix this problem.

(3) Scholze, here: “Topological spaces formalize the idea of spaces with a
notion of "nearness" of points. However, they fail to handle the idea of
"points that are infinitely near, but distinct" in a useful way. Condensed
sets handle this idea in a useful way." For the most basic example,
consider the action of Q on R. The quotient space R/Q has infinitely
many points, but the quotient topology is indiscrete—no two points
can be separated. We have lost topological information. More impor-
tant examples like this arise in algebraic geometry, functional analy-
sis, ...

(4) Another good reason is because Peter Scholze says that developing
condensed math might be one of the most important things he will
ever do.

V.1 Naive condensed sets

The proposal is to replace topological spaces with condensed sets. These
will be sheaves on the site of (compact, Hausdorff) spaces.
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Definition V.1. Denote by cHaus the category of compact Hausdorff spaces.
The collection of “finite, jointly-surjective maps" forms a Grothendieck topol-
ogy for cHaus. Precisely, a family of morphisms {Ui → U}I is in this Grothendieck
topology iff I is finite and each u ∈ U is hit by some Ui → U .

Definition V.2. A naive condensed set is a sheaf of sets on the site cHaus. In
other words, a functor F : cHausop → Set such that

(1) If A,B ∈ cHaus, then the natural map F (A ⨿ B) → F (A) × F (B) is
a bijection.

(2) If A → B is a surjection in cHaus, then the natural map F (B) →
{a ∈ F (A) : p∗1(a) = p∗2(a) ∈ F (A ×B A)} is a bijection. (In other
words, that map realizes F (B) as an equalizer of the two projections
F (A)→ F (A×B A).)

Remark V.3. This definition has set-theoretic issues. The essential quirk is
that the category cHaus is large: there is more than a set’s worth of compact
Hausdorff spaces. In general, strange things happen with large categories,
in particular there is no “category of functors C → D" if C is large. We
will spend most of this seminar correcting this issue. In doing so, we will
learn foundational condensed theory and get some categorical exercise. No
actual set theory will be involved (for those worried). We will get to more
interesting theory toward the end(?)

Example V.4. Let’s ignore set-theoretic issues for a moment. Recall the ex-
ample from (1) above: in TopAb, the morphism i : (R, discrete)→ (R, Euclidean)
has trivial cokernel and kernel, thus should be an isomorphism, but is not.
Condensed theory says to replace TopAb with the category of condensed
abelian groups, i.e. with sheaves of abelian groups on cHaus. Every space
gives rise to a condensed set via X 7→ X := HomTop(−, X), and the mor-
phism i : (R,discrete) → (R,Euclidean) induces a morphism of condensed
abelian groups

i : (R,discrete)→ (R,Euclidean).

We can compute the kernel and cokernel of this map! The kernel is trivial,
however the cokernel is the sheaf

cHausop ∋ S 7→ {continuous maps S → (R,Euclidean)}/{continuous maps S → (R,discrete)} ∈ Ab.

This is not trivial in general. For instance, consider S = (I,Euclidean). The
function f : S → (R,Euclidean) given by x 7→ x is not continuous as a
function S → (R,discrete). Thus, passing to condensed sets has revealed a
nontrivial cokernel that “explains" why i is not an isomorphism.
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Remark V.5. In the previous example, we showed that the cokernel sheaf
(R,Euclidean)/(R,discrete) is not trivial. We did so by finding S ∈ cHausop

on which the cokernel sheaf is nontrivial. If S = ∗, however, then (R,Euclidean)/(R,discrete)(S) =
0, and this is precisely saying that the quotient of topological abelian groups
(R,Euclidean)/(R,discrete) is trivial. Thus, classical theory “looks at things
from the perspective of a point" while condensed theory “looks at things
from the perspective of all compact Hausdorff spaces at once. (This is an
informal slogan. I stole it from Logan.)

V.2 Presheaves

We want to fix the problem with naive condensed sets (c.f. Remark V.3).
At several points, we will use (co)limit completions of categories. Presheaves
are the terminal example. We will review the relevant theory for presheaves
today, then talk about (co)limit completions in general next time.

Let C denote a small category. Given X ∈ C, write hX for the presheaf
represented by X, i.e. hX := HomC(−, X).

Definition V.6. Recall that a presheaf on C is a functor F : Cop → Set.
With natural transformations as morphisms, presheaves form a category.
We write this either Fun(Cop, Set) or PShv(C).

Definition V.7. Let F : Cop → Set be a presheaf. Its category of elements elF
is the category defined as follows.

• The objects are morphisms of functors hX → F .4

• The morphisms between (hX → F ) and (hY → F ) are the natural
transformations hX → hY making the following triangle commute.

hX hY

F

Remark V.8. The category of elements elF associated to the presheaf F is
an example of a more general construction called the slice category.

4I.e., the set of objects is in bijection with pairs (X, η) where X ∈ Ob(C) and η is a
natural transformation of functors Hom(−, X) =⇒ F .
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Remark V.9. The Yoneda lemma says that morphisms X → Y are in natural
bijection with natural transformations Hom(−, Y ) =⇒ Hom(−, X). Thus,
morphisms hX → hY in elF are “the same thing as" certain morphisms
X → Y .

Proposition V.10. Consider the canonical functor DF : elF → C taking
hX → F to X. Let y : C ↪→ PShv(C) denote the Yoneda embedding. We have

F ∼= colim−→(y ◦DF ).

Proof. For ease of notation, write ϕ := y ◦ DF . The functor ϕ : elF →
PShv(C) takes objects hX → F to hX and morphisms hX → hY to them-
selves. By construction, for every object z ∈ elF , there is a morphism
ϕ(z) → F in PShv(C) and all these morphisms commute with those in the
diagram y ◦ DF . By the universal property of colimits, there is an induced
map

colim−→ϕ→ F.

The claim is that this is an isomorphism. We will show that it is injective.
That is, we will show that for every X ∈ C and α ∈ F (X), the set map
[colim−→ϕ](X) → F (X) hits α. This boils down to the Yoneda lemma: it says
that for every α ∈ F (X), there is a morphism hX → F such that id ∈
hX(X) maps to α. Unwinding definitions, this implies that colim−→ϕ → F is
surjective.
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VI Lecture 6: Colimit completions

VI.1 Presheaves as a colimit completion

As an extended motivating example, I’ll explain why for a small category
C, the presheaf category PShv(C) := Fun(Cop, Set) is

(1) “The same thing as" small diagrams in C, and

(2) The “free colimit completion" of C.

Note that these are characterizations of PShv(C). (Although, to make (1) a
definition requires more than we talk about.) This will model our approach
to other types of completions.

First I’ll explain (1). The relevant theorem is called the density theorem.
Let me restate (maybe a bit more clearly) what we discussed last time.

Let C be a small category and PShv(C) := Fun(Cop, Set) its presheaf category.
The Yoneda embedding is the fully faithful functor

Y : C ↪→ PShv(C)

sending objects to their represented functor (i.e., X 7→ HomC(−, X)) and
morphisms f : X → Y to the natural transformation HomC(−, Y ) →
HomC(−, X) given by post-composition with f . Given a preseaf F : Cop →
Set, we defined its category of elements elF . There’s a canonical functor
DF : elF → PShv(C).

Proposition VI.1. The functor DF : elF → PShv(C) factors as the composite

elF C PShv(C).
Y

Here, the first functor elF → C sends an object hX → F to X and a morphism
hX → hY to its corresponding morphism X → Y under the identification
Hom(hX , hY ) ∼= hY (X) = Hom(X, Y ).5 By abuse of notation, we write DF

for the functor elF → C also.

Proof. Easy exercise. (Use the Yoneda lemma.) (Is this equivalent to some
version of Yoneda?)

Proposition VI.2 (Density theorem). A presheaf F ∈ PShv(C) is the colimit
of its category of elements:

F ∼= colim−→
elF

DF .

5That identification is the Yoneda lemma.
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Remark VI.3. The density theorem and Proposition VI.1 say that every
presheaf F ∈ PShv(C) is “canonically" presented by a diagram in C, namely
as the diagram elF → C. Conversely, although a diagram I → C may not
have a colimit in C, we may Yoneda-embed and consider the diagram I →
C ↪→ PShv(C). Since PShv(C) is complete and cocomplete, this diagram admits
a colimit (which is a presheaf on C). In some weak sense, we’re saying that Did

Michael
talk
about
this?

presheaves on C are “the same thing as" diagrams in C. You could make this
more precise if you wanted to, I think.

Let me just tack on the (co)completeness property I just mentioned.

Proposition VI.4 (Tag 00VB). If C is any small category, then PShv(C) is
complete and cocomplete. Moreover, limits and colimits of presheaves are “com-
puted pointwise" in the sense that given a diagram F : I→ PShv(C),

• The presheaf c 7→ colim−→i
Fi(c) is the colimit of F , and

• The presheaf c 7→ lim←−i
Fi(c) is the limit of F .

We may summarize this by writing [lim←−i
Fi](c) = lim←−i

[Fi(c)] and [colim−→i
Fi](c) =

colim−→i
[Fi(c)].

Here’s (2).

Proposition VI.5 (PShv(C) is the free colimit completion). By Proposition VI.2,
each presheaf F ∈ PShv(C) is canonically a colimit over the diagram of its cat-
egory of elements: F ∼= colim−→[y ◦DF ]. Suppose as given a cocomplete category
D. For each functor G : C→ D, define a functor G: PShv(C)→ D by(

colim−→[y ◦DF ]
)
7→ colim−→FDF .

Claim: the functor G is cocontinuous and the functor G 7→ G defines a cate-
gorical equivalence

Fun(C,D) ∼= Funcocts(PShv(C),D).

Remark VI.6. We already knew that PShv(C) had all colimits (and limits).
This proposition says that PShv(C) is universal with respect to this prop-
erty: any functor C→ D landing in a cocomplete category factors uniquely
through a cocontinuous functor PShv(C)→ D.
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VI.2 So, what’s a colimit completion?

Suppose as given a small category C. We gave three interpretations of
presheaves on C:

(1) Presheaves are functors F : Cop → Set (this was our definition);

(2) Presheaves “are" diagrams in C (we only formalized one direction of
this); and

(3) Presheaves are the free colimit completion of C (this is a universal
property, thus a characterization).

Now we ask, what if we only want to complete C at “nice" colimits? The
above suggests three approaches we may try, which are all useful. Namely,
a completion of C at “nice" colimits should be...

(1) The subcategory of “nice" presheaves S ⊆ Fun(Cop, Set);

(2) The subcategory of “nice" diagrams in C; and

(3) The free “nice colimit" completion of C.

We are interested in the filtered colimit completion, its dual cofiltered limit
completion, and the sifted colimit completion. We will define/construct
these along the lines of (1), (2), and/or (3) above.

VI.3 Ind(C)–completing at filtered colimits

Here we develop the our first “new" type of completion. We make our defi-
nition in the likeness of (2), taking “nice"= small, filtered diagrams. We will
write Ind(C) for the resulting category. This will be a free completion at fil-
tered colimits, giving us our characterization (3). As for (1), we will exhibit
a canonical embedding Ind(C) ↪→ PShv(C) and prove that it is fully-faithful,
with essential image = the full subcategory spanned by filtered colimits
of representables. (If C admits finite colimits, then we can say more: fil-
tered colimits are precisely those commuting with finite limits, and we will
deduce that Ind(C) is precisely the subcategory of right exact presheaves
Funrex(Cop, Set). I.e., those which preserve finite colimits.)

Definition VI.7. A diagram I is called filtered if (i) it is nonempty, (ii) for
any two objects j, j′ there exist arrows j → k ← j′, and (iii) for any parallel
arrows a, b : j → j′ there exists an arrow j′ → k equalizing them. A colimit
is called filtered if it is taken over a filtered diagram.
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Remark VI.8. In Set, finite limits commute with filtered colimits. In fact,
this characterizes filtered diagrams: a category I is filtered if and only if for
every diagram F : I → Set, its colimit commutes with all finite limits: that
means for every finite diagram G : J→ C, one has

lim←−
J

colim−→
I

F ×G ∼= colim−→
I

lim←−
J

F ×G.

Definition VI.9. An ind-object of C is a filtered diagram I → C. Ind-objects
are sometimes written “colim−→I

”. Lurie also just writes {xi}I.

Remark VI.10. What should morphisms be? We want to think of ind-
objects as “stand-ins" for their colimits, i.e. as “formal filtered colimits."
(An ind-object may not really have a colimit in C, but Y embeds them fully
faithfully into PShv(C), which has all colimits.) Then morphisms should be
such that these “formal filtered colimits" behave like actual colimits. To be
precise: let us regard two ind-objects X := “colim−→I

”xi, Y := “colim−→J
”yj as

“formal colimits" in C. We ought to have

Hom(X, Y ) = lim←−
I

Hom(xi, Y ) = lim←−
I

colim−→
J

Hom(xi, yj).

We expect the first equality because Hom takes colimits to limits in the first
variable. We expect the second equality for some slightly more complicated
reason. This brings us to our definition.

Definition VI.11. The ind-morphisms between two ind-objects {xi}I →
{yj}J are defined as

Hom({xi}I, {yj}J) := lim←−
I

colim−→
J

Hom(xi, yj).

Definition VI.12 (Characteriztion (2), Ind(C) as diagrams). We denote by
Ind(C) the ind-category of C.

Proposition VI.13 (Characterization (1), Ind(C) as presheaves). Consider
the canonical functor F : Ind(C)→ PShv(C) that Yoneda embeds an ind-object
X := {xi}I and takes its colimit in PShv(C). This functor is fully faithful. Thus,
Ind(C) may be identified with the full subcategory of PShv(C) spanned by ind-
objects, i.e. spanned by the filtered colimits of representable presheaves.

Proof. This is basically by definition. Let X, Y be ind-objects. Recall that
Hom takes colimits to limits in the first argument and that limits of presheaves
are computed pointwise. We get a natural isomorphism

HomPShv(C)(colim−→
I

[−, xi]︸ ︷︷ ︸
FX

, colim−→
J

[−, yj]︸ ︷︷ ︸
FY

) ∼= lim←−
I

colim−→
J

Hom(xi, yj).
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The right-hand side is HomInd(C)(X, Y ) by definition. Then (by definition)
the functor Ind(C) → PShv(C) is just the identity on hom-sets, which is
bijective.

Remark VI.14. Conside the embedding C ↪→ Ind(C) which maps an object c
to its singleton diagram ∗ 7→ c. This clearly factors the Yoneda embedding,
i.e. Y lands in Ind(C), i.e. the following diagram commutes.

Ind(C)

C PShv(C)
Y

We said that Ind(C) is naturally the full subcategory of Fun(Cop, Set) of fil-
tered colimits of representables. If C is “nice," we can describe this subcat-
egory more concretely.

Corollary VI.15 (What kind of presheaves?). Recall that filtered colimits
are precisely those commuting with finite limits. Suppose that C is finitely
cocomplete, so that Cop admits finite limits. [Don’t we want Cop to have finite
colimits?] The previous corollary says that an ind-object X is a filtered colimit
of representables X = colim−→I

Yxi. Then we may evaluate X at a finite colimit
in Set and compute:

X(colim−→
J

yj) = [colim−→
I

Hom(−, xi)](colim−→
J

yj)

= colim−→
I

Hom(colim−→
J

yj, xi)

= colim−→
I

lim←−
J

Hom(yj, xi)

= lim←−
J

colim−→
I

Hom(yj, xi).

In order, these equalities follow from: (1) definition; (2) colimits of presheaves
are computed pointwise; (3) Hom takes colimits to limits in the first argu-
ment; and (4) filtered colimits commute with finite limits. Thus, ind-objects
are presheaves which preserve finite colimits.

Proposition VI.16. The converse is also true: if a presheaf F preserves finite
colimits, then F is a filtered colimit of representables. (Namely, DF is filtered,
whence F ∼= colim−→DF proves the claim.)
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Corollary VI.17. Thus, Ind(C) is precisely the full subcategory of right exact
presheaves, i.e. those preserving finite colimits. Then we may identify (or take
as defintion)

Ind(C) ∼= Funrex(Cop, Set).

Lastly, we want a characterization of Ind(C) in the likeness of (3), a “free
filtered colimit completion" universal property.

Proposition VI.18 (Characterization (3), Ind(C) as free filtered colimit com-
pletion). If D has filtered colimits, then restriction along Y : C ↪→ Ind(C)
induces an equivalence of categories

Θ : Fun(C,D) ∼= Funfilco(Ind(C),D).

Proof. Restriction along Yoneda is the functor Θ : Funfilco(Ind(C),D) →
Fun(C,D) given by F 7→ YF . We will show that Θ is fully faithful and
essentially surjective. Suppose as given F,G ∈ Funfilco(Ind(C),D).

(Full) Take as given a natural transformation η : YF → YG. We want to
extend this to a natural transformation η̄ : F → G. Recall that X ∈ Ind(C)
has a canonical presentation as a filtered colimit X = colim−→I

Yxi. Since
F preserves filtered colimits, FX = colim−→I

FYxi. Likewise for GX. Now
the existing ηxi

: FYxi → GYxi determine a map FX → FY . All these
assemble to a natural transformation η̄ which obviously satisfies Θ(η̄) = η,
i.e. η̄ restricts to η.

(Faithful)
(Essentially surjective)

Remark VI.19. In other words, Ind(C) has the following property: for any
functor F : C → D to a category admitting filtered colimits, there exists a
unique functor Ind(C)→ D such that (1) it extends F along Y : C ↪→ Ind(C),
and (2) it preserves filtered colimits. And this describes a bijection (in fact,
a functorial equivalence) between Fun(C,D) and Funfilco(Ind(C),D).
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VII Lecture 7: Profinite sets and spaces

Let C be a category. Last time we defined its ind-completion Ind(C). I wanted
to define other completions, but we did not have time, but that is OK since
we described the general procedure for completions. Today, we will use
a completion “dual" to Ind(C), and will finally do something vaguely con-
densed.

VII.1 Pro(C)–completing at cofiltered limits

Definition VII.1. Given a category C, we define its pro-category Pro(C) as

Pro(C) := (Ind Cop)op.

Proposition VII.2. The pro-category Pro(C) is “dual" to Ind(C) in many ways:

(1) Pro(C) is the category of “formal cofiltered limits" in C, i.e. cofiltered
diagrams I → C ↪→ PShv(C) with appropriate morphisms. Namely,
hom-sets have a description dual to Definition VI.11:

HomPro(C)(“ lim←−”Ixi, “ lim←−”Jyj) = lim←−
J

colim−→
I

HomC(xi, yj).

(2) We may identify Pro(C) with its image under the embedding Pro(C) ↪→
PShv(C) given by Yoneda-embedding a diagram and taking its limit
in PShv(C). This identifies Pro(C) as the full subcategory spanned by
pro-objects, i.e. cofiltered limits of representable presheaves.

(3) In particular, dual to Corollary VI.17, if C is finitely complete, then
Pro(C) is naturally the full subcategory of left exact presheaves, i.e.
those preserving finite limits:

Pro(C) ∼= Funlex(Cop, Set).

(4) Pro(C) has the “free completion of C at cofiltered limits" universal prop-
erty.

VII.2 Basic structure of ProFinSet

Now take C = FinSet and D = Top. Let disc: FinSet → Top endow each
finite set with the discrete topology. Since Top is complete, the universal
property says that disc has a unique cofiltered-limit preserving extension

disc : ProFinSet→ Top.
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In our formulation of PShv(C)’s free colimit completion property [c.f. Propo-
sition VI.5] we explicitly constructed (from a functor to a cocomplete cat-
egory C → D) the colimit-preserving extension PShv(C) → D. To prove
that Ind(C) and Pro(C) have their universal properties, one may carry out a
totally analogous construction (to construct an inverse to the Y-restriction
functor). In the present case, we get a concrete definition of disc: it acts
by {si}I 7→ {disc(si)}I 7→ lim←−I

disc(si). All this summarizes to the following
commutative diagram.

ProFinSet

FinSet Top Pro(Top)
disc {Xj}j 7→lim←−Xj

disc
{si}i 7→{disc(si)}i

We are gathered here today to present two basic and nice structure theo-
rems.

Theorem VII.3. The functor disc : ProFinSet → Top is continuous and fully
faithful.

Theorem VII.4. Call a space profinite if it belongs to the essential image of
disc. TFAE.

(1) X is a profinite space.

(2) X is a cofiltered limit of finite, discrete spaces.

(3) X is a limit of finite, discrete spaces.

(4) X is a Stone space, i.e. it is Hausdorff, compact, and totally discon-
nected.

Remark VII.5. Let’s ruminate on Theorem VII.3. Suppose that S is a profi-
nite set. The space X := disc(S) does not “know" it arises from a profinite
set—a priori, to remember X ∼= disc(S) is “extra structure," comparable to
a filtration. Nevertheless, what Theorem VII.3 tells us is that there is really
no loss of information. Up to isomorphism, the topology on X uniquely
encodes the profinite set S. Say

this
bet-
ter?

VII.3 The profinite topology

Let’s lay a bit of groundwork and prove part of Theorem VII.4. If I say
something wrong or confusing, maybe consult Section 08ZS.
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The functor disc maps a profinite set {si} to the colimit of each set si
regarded as a discrete space. What is this colimit (both its underlying set
and topology)? We

talked
about
this
a bit
in
Lec-
ture
II?

Proposition VII.6. The forgetful functor U : Top → Set commutes with all
small limits and colimits.

Proof. There are a few ways you could do this. Maybe the shortest: the
forgetful functor is left and right adjoint (to the indiscrete space functor and
to disc, respectively). Left adjoints always commute with colimits. Right
adjoints always commute with limits.

Proposition VII.7. Let {Xi}I be a pro-system of topological spaces. By Propo-
sition VII.6, the underlying set of lim←−Xi is given by

U lim←−Xi = {(xi)i ∈
∏
i

Xi : ∀ϕ : i→ i′, we have (Xϕ)(xi) = xi′}

where the right-hand side is the general formula for a limit of sets as in Exam-
ple II.19. Define the profinite topology on U lim←−Xi to be the subspace topology
induced by U lim←−Xi ↪→

∏
Xi. The claim is that this is the smallest6 topology

on U lim←−Xi such that every projection pj : lim←−Xj → Xj is continuous. In
effect, (U lim←−Xi, profinite topology) is the limit of the pro-system {Xi}.

Summarizing, Proposition VII.6 describes the underlying set of a limit or
colimit of spaces in general, and Proposition VII.7 concretely describe the
topology on a cofiltered limit of spaces. In particular, given S = {si} ∈
ProFinSet, we can concretely describe disc(S), since disc just takes the cofil-
tered limit of the si as discrete spaces. This concrete description lets us use
our hands to prove the following.

Proposition VII.8. If {Xi}i is a pro-system, then X := lim←−Xi with the profi-
nite topology is compact, Hausdorff, and totally disconnected.

Proof. That X is Hausdorff is clear: each Xi is Hausdorff, so then
∏

Xi is, so
then are its subspaces, in particular X is Hausdorff. (This holds for general
limits of Hausdorff spaces.)

Proof that X is compact: Note that X is a subspace of a product of
compact spaces (the discrete spaces Xi). Tychonoff’s theorem says that the
product is compact, so it suffices to show that X is closed. (To-do: show
that) (This holds for general limits of compact Hausdorff spaces.)

6Least open sets.
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Proof that X is totally disconnected: let a, b ∈ X be distinct, which
means there is some pj : X → Xj such that pj(a) ̸= pj(b). Choose sets
A,B such that A,B partition X, a ∈ A, and b ∈ B. Since pj is surjective,
π−1
j (A) and p−1

j (B) partition X, and they are open because A,B ⊆ Xj

are open, and seperate a and b by definition. Thus there are no connected
subsets with more than one element. (This holds for general limits of totally
disconnected spaces.)

Corollary VII.9. We conclude that (1) =⇒ (4) in Theorem VII.4. For by
Proposition VII.7, if {Xi} is a pro-system of finite sets, then X := lim←−Xi

with the profinite topology is a limit in Top of {Xi} where the Xi carry the
discrete topology. Therefore F ({Xi}) ∼= (X, profinite topology). The latter is
Hausdorff, compact, and totally disconnected by Proposition VII.8.

VII.4 disc is continuous and fully faithful

Proposition VII.10. ProFinSet has all limits.

Proof. A category has finite limits ⇐⇒ it has equalizers and finite prod-
ucts. Furthermore, a category with finite limits and cofiltered limits has all
limits. We know that FinSet has equalizers and finite products, hence finite
limits. This generally passes over to the procategory, so ProFinSet has finite
limits. It also has cofiltered limits by construction, hence it is complete.

Proposition VII.11. The functor disc : ProFinSet → Top induced by disc :
FinSet ↪→ Top preserves limits.

Proof. I’ll give two (sketch) proofs.
First proof: we can directly verify that disc preserves equalizers and

finite products, so disc preserves finite limits. (See Michael’s paper.) Ad-
ditionally, the dual to Proposition VI.18 says that disc preserves cf limits.
Since disc preserves finite and cf limits, it preserves all limits.

Second proof: recall that disc is the composite ProFinSet→ Pro(Top)→
Top. The first map is induced by disc and the second is “take the limit."
We’ll show that both maps are continuous:

• Since FinSet ↪→ Top preserves finite limits, so does ProFinSet →
Pro(Top). Furthermore, ProFinSet → Pro(Top) preserves cofiltered
limits,7 and we conclude ProFinSet→ Pro(Top) preserves all limits.

7Given any functor G, the map on procategories induced by G preserves cofiltered
limits; this is [KS, Prop 6.1.9].

43



• Since Top has cf limits (it is complete), the dual to ?? says that eval-
uation Pro(Top)→ Top is a left adjoint, hence preserves limits.

Right adjoints have the great property that they preserve all limits. The
last proposition says that disc does too. The adjoint functor theorem gives
us the converse: disc has a left adjoint.

Corollary VII.12 (Application of adjoint functor theorem). Denote by π̂0:
Top→ ProFinSet the functor given by X 7→ {Xi} where {Xi} is the codirected
set of finite, discrete quotients of X. It is left adjoint to disc.

So, we have an adjunction

ProFinSet Top.
disc

π̂0

⊣

The counit of this adjunction is a natural transformation ϵ : π̂0 lim←−(−) =⇒
idProFinSet. In general, a left adjoint is fully faithful ⇐⇒ its counit is an
isomorphism. And we can show our counit ϵ is an isomorphism.

Proposition VII.13. The counit of the adjunction F ⊣ π̂0 is an isomorphism.
Equivalently, disc is fully faithful.

Proof. I said this was elementary but it’s not very short. And I’m not con-
vinced it’s very useful. Consult Chicago course notes. It’s an application of
elementary facts about compact and finite spaces.

VII.5 Profinite sets ∼= Stone spaces

We’ve shown that disc : ProFinSet → Top is fully faithful and lands in
Stone spaces (compact, Hausdorff, totally disconnected). Now we will show
that all Stone spaces arise as profinite spaces. Thus disc is an equivalence
between ProFinSet and Stone spaces.

Proposition VII.14. If X is a compact, Hausdorff, totally disconnected space,
then X is a profinite space, i.e. it belongs to the essential image of disc.

Corollary VII.15. We have that (4) =⇒ (1) in Theorem VII.4.
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Proof. Take X as given. Denote by FinPar(X) the set of finite partitions
of X, i.e. each element A ∈ FinPar(X) consists of finitely many disjoint,
nonempty opens Uj ⊆ X such that X =

⊔
Uj∈A Uj. If A,B ∈ FinPar(X),

declare that A ≤ B iff B refines A. This makes FinPar(X) into a poset.
Consider the diagram FinPar(X)→ Top giving each A ∈ FinPar(X) the

discrete topology. Define

X ′ := lim←−
A∈FinPar(X)

A

To be the limit over this diagram. Note that X ′ is profinite since FinPar(X)
is cofiltered. For each A ∈ FinPar(X), denote by fA : X → A the map which
sends x ∈ X to the open U ∈ A containing it. The collection of fA’s induces
a map f : X → X ′.

Since X ′ is profinite, it is compact. So, if we show that f : X → X ′ is a
bijection, we can conclude it is a homeomorphism.

Injectivity of disc is easy: since X is totally disconnected, if x, y ∈ X,
any cover A ∈ FinPar(X) either separates x and y or can be refined to a
cover separating x and y. This suffices to find that disc is injective.

(To-do: show surjective.)
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VIII Lecture 8: The site cHausκ

We’re going to start building to some proper condensed math now.

Definition VIII.1. A strong limit cardinal is a cardinal κ so that λ < κ
implies 2λ < κ.

For every uncountable strong limit cardinal κ, we define cHausκ to be
the category of compact Hausdorff spaces of cardinality strictly less than κ.
Note that cHausκ is then essentially small.

One can prove that cHausκ has all finite limits: just take the finite limit
in cHaus, and you won’t exceed the cardinality bound.

cHausκ is finitely cocomplete. In fact, cHausκ is closed under all colimits
whose diagrams have fewer than λ objects, where λ is the cofinality of κ.
Here, the cofinality is the smallest λ so that there exist a collection of λ
many sets of κ-small cardinality but whose disjoint union has cardinality
κ.

Proof. The inclusion i : cHaus → Top is right adjoint to Stone-Cech com-
pactification; left adjoints preserve colimits, and so we can get a colimit
in cHaus by taking the ordinary colimit and then applying the Stone-Cech
compatification. Thus cHaus is cocomplete, and so cHausκ is finitely cocom-
plete since

|βX| ≤ 22
|X|

< κ

whenever |X| < κ.
In fact, cHausκ admits all λ-small coproducts and all coequalizers, so we

get the λ part.

We give cHausκ a Grothendieck topology by families of finite jointly
surjective morphisms.

VIII.1 Weakly contractible objects

Let C be a site. An object X ∈ C is said to be weakly contractible if, for
every epimorphism F → G of sheaves of sets, the map F(X) → G(X) is
surjective.

We say that C has enough weak contractibles if every object can be
covered by weakly contractible objects.

If X is weakly contractible, then ΓX : Ab(C)→ Ab is exact, and Hp(X,F) =
0 for all p ≥ 1 and all abelian sheaves.
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Proof. The second part is implied immediately by the first; the first is defi-
nitional.

Corollary VIII.2. If C is a cite with enough weakly contractible objects, then
F1 → F2 → F3 is exact if and only if F1(X) → F2(X) → F3(X) is exact for
every weakly contractible X. Furthermore, products are exact in Ab(C), and
in any inverse system

· · · → F3 → · · · → F1,

the projection map
lim←−
n

Fn → F1

out of the inverse limit is surjective.

Proof. Follow your nose. todo: say more.

VIII.2 Extremally disconnected spaces

IX Lectures past 8

In the lectures after 8, we switched to using the notes from the Emerton-
Mathew condensed math course that I (Michael) took. Here is what we did,
with specific references to those notes:

1. Looked at the concept of Kan extensions and its relationship to the
theory of sheaves on a base. See section 4.6 of the notes.

2. Explained some nice features of the topos Condκ, specifically how it
arises as either sheaves on cHausκ, sheaves on κ, or as the sifted-ind
completion of the category of extremally disconnected sets; this is
chapter 3 of the notes.

3. We then defined Cond and , see chapter 4 of the notes, particularly
section 4.7.

4. Finally, we discussed cohomology with coefficients in a condensed
abelian group. This is a little subtle, since unlike the category of
abelian sheaves on a site, does not have enough injectives (in fact,
as proven in chapter 5 of the notes, it has no injectives besides 0!).
Chapter 5 of the notes explains how to use projective resolutions to
define cohomology.

5. We ended by doing two cohomology computations; these are sec-
tions 8.3 and 8.4 of the notes.

47


	I (Review) Lecture 1: Some category theory
	I.1 Examples of categories
	I.2 Isomorphisms
	I.3 Functors
	I.4 Examples of functors
	I.5 Natural transformations

	II (Review) Lecture 2: More category theory
	II.1 Reminder about natural transformations
	II.2 Limits and colimits
	II.3 Examples of limits and colimits
	II.4 The Hom functor
	II.5 Adjunctions
	II.6 More Hom functor

	III (Review) Lecture 3: Sheaves on spaces
	III.1 What is a sheaf?
	III.2 The categories of sheaves and presheaves
	III.3 The inverse and direct image functors
	III.4 Sections and constant sheaves
	III.5 Restriction and extension
	III.6 Skyscraper sheaves and stalks

	IV (Review) Lecture 4: Sheaves on sites
	IV.1 Sites
	IV.2 Sheaves on a site
	IV.3 Weil conjectures
	IV.4 Etale cohomology

	V Lecture 5: Condensed mathematics?
	V.1 Naive condensed sets
	V.2 Presheaves

	VI Lecture 6: Colimit completions
	VI.1 Presheaves as a colimit completion
	VI.2 So, what's a colimit completion?
	VI.3 Ind(C)–completing at filtered colimits

	VII Lecture 7: Profinite sets and spaces
	VII.1 Pro(C)–completing at cofiltered limits
	VII.2 Basic structure of ProFinSet
	VII.3 The profinite topology
	VII.4 disc is continuous and fully faithful
	VII.5 Profinite sets .5-.5.5-.5.5-.5.5-.5 Stone spaces

	VIII Lecture 8: The site cHaus
	VIII.1 Weakly contractible objects
	VIII.2 Extremally disconnected spaces

	IX Lectures past 8

