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I January

I.1 (1/10) Chromatic III – In the year 2025
Christmas and New Year’s were short and sweet, and I’ve just flown back to Cambridge. Continuing my
program, I would like to write something about the Morava K-theories. For continuity, let’s recap the
previous entry.

The derived category of abelian groups decomposes into “irreducible building blocks" in a nice way: it
has minimal localizing subcategories D(Z)Q and D(Z)p for p prime, and in fact any M ∈ D(Z) can be
reconstructed from its localization data by a certain pullback. These subcategories are examples of prime
ideals in a monoidal triangulated category, in fact all of them in D(Z), and the set of them naturally forms a
topological space Spc(D(Z)). Meanwhile in the category of spectra Sp, the unit S0 has endomorphism ring
End(S0) ∼= Z and this begets a natural, continuous map

Spc(Sp)→ Spec(Z) ∼= Spc(D(Z)).

This comparison map is surjective. One can ask about the fibers over each point of Spec(Z), and the beautiful
fact is that each fiber admits a sequential filtration by “height." (A tad more precisely: the fiber consists of
a closed point (p), a generic point (0), and a sequence of intermediary points which each have closure all the
“above" points.)

How can we access this filtration? Let us focus on the finite p-local spectra Spω(p). It turns out that the
global structure of Sp remains interesting upon restriction to Spω(p), and here we have more proof power. In
particular, we can characterize thick subcategories as acyclics for a sequence of awesome spectra K(p, n),
and then remove the finiteness assumption. All this and more, coming soon!

(...)

I.2 (1/15) Spectrum of quadratic forms and SK(1)

Recall that SpK(n) is ∞-semiadditive, thus every K(n)-local spectrum has a unique higher commutative
monoid structure. What can be said about that structwure of the unit SK(n)? I have been reading [CY22],
whose thesis is that at p = 2, the p-typically 1-commutative monoid structure of SK(1) is captured by a
“spectrum of symmetric bilinear forms." More precisely, in [CY22] it is exhibited that

LK(1)GW(−)(Fℓ) ∼= S(−)
K(1)

as 1-precommutative monoids, i.e. in the functor category Fun(Span(S
(p)
1 )op,SpK(1)). Here, the Grothendieck-

Witt spectrum GW(Fℓ) is the purported “spectrum of symmetric bilinear forms."

Remark I.2.1. To get a whole functor GW(−)(Fℓ), we must specify values on BG’s and coherences. By
construction, at BG this functor obtains a “spectrum of G-equivariant bilinear forms," and the coherences
amount to1 transfers and restrictions.

The spectrum GW is constructed in stages:

(1) Given a symmetric monoidal C, one considers its...

(i) Nondegenerate bilinear forms, understood as the fixed points of the dualizing involution Φ(Cdbl,D).
(Understanding Φ is nontrivial because D lands in Cop and thus is not directly instantiated by a
C2-action. This is not the case for the next step.)

(ii) Symmetric nondegenerate bilinear forms, understood as the fixed points Φ(Cdbl,D)hC2 of the C2-
action that precomposes with the swap map.

1To what extent do they literally “amount to" this?
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(iii) Maximal subgroupoid of the above.

Altogether, we have a space of quadratic forms QF (C) := (Φ(Cdbl,D)hC2)≃.

(2) Next, one imagines that C is p-typically m-semiadditive symmetric monoidal. Details must be checked:
since m-semiadditivity is preserved by (−)op, we may speak of the category of p-typically m-semiadditive
categories with op-involution (Cat(p)m )hC2 and restrict Φ to it. This category is m-semiadditive and Φ

is monoidal, whence Φ(Cdbl,D) is not just an object of CatBC2
∞ , in fact it lands in CMon(p)m (Cat∞)BC2 .

Finally, form QF (C) by the same procedure as above. (What’s changed is that QF (C) is now a p-typically
m-commutative monoid in S.)

(3) There is a group completion functor (−)gp : CMon(S) → Sp. Applying this “levelwise" (for details c.f.
[CY22, §3.2.3]), we compose to a functor

GW : CAlg(Cat(p),m∞ )→ CMon(p)m (S)→ PMon(p)m (Sp).

The GW functor does not lift to CMon(p)m (Sp).2 However, GW turns out to be lax symmetric monoidal,
whence it does lift to

GW : CAlg(Cat(p),m∞ )→ CAlg(PMon(p)m (Sp)).

Of interest is the following special case (c.f. [CY22, Ex 3.2.13]). For a discete ring R, the category
ModR is 0-semiadditive; if in addition 2 is invertible in R, then ModR is 2-typically 1-semiadditive. We
may therefore consider the Grothendieck-Witt theory of R as a 2-typically 1-precommutative monoid (or the
quadratic forms QF (ModR) as a 2-typically 1-commutative monoid)

GW(−)(R) :Span(S
(2)
1 )op → Sp,

QF (−)(R) :Span(S
(2)
1 )op → S.

In fact, we can put a CAlg on the target categories, and QF satisfies the Segal condition. (Insert or think
about another day: how do we identify with SK(1) after K(1)-localization, and what can we do with that
equivalence?)

I.3 (1/20) Chromatic IV – Typically, cooperation is a universal good
(Abandon hope: this entry abruptly ends, as I outsourced it to Babytop. Will return later.)

I want to say something about formal groups, Hopf algebroids, and complex cobordism. And more
importantly, I want to look inward: what can we say about ourselves upon candid, surrendered introspection?
Vulnerable reflection is a valuable personal exercise; consider for example the complex cobordism spectrum
MU , who opens up upon localization at a fixed prime. Therein we discover remarkable p-typical phenomena
that power the chromatic machine. To this end, I want to acknowledge the p-typical story and study the
height filtration.

Where to start today? As usual, I try to begin with things I know. That would be (commutative,
one-dimensional) formal group laws. Recall that the Lazard ring L is the quotient of Z[aij ] by the relations
necessary for the formal sum F (x, y) = x+ y+

∑
aijx

iyj to be a group law, and by pushing F forward, the
Lazard ring L corepresents R 7→ FGL(R). Moreover, one may consider L as a graded ring with |aij | = 2(i+j),
and there exists a graded isomorphism L ∼= Z[x1, x2, . . . ] classifying a group law over Z[x1, . . . ] which admits
an explicit description.

One step to the left, there is a theory of complex-oriented ring spectra. One first defines these as ring
spectra admitting a theory of Chern classes, with one property relaxed: for such a spectrum E, the first

2In order to group complete levelwise, we must first include CMon into PMon, wherein this is possible. This does not rule
out the existence of a lift, however the wording of [CY22] suggests they have a counterexample demonstrating nonexistence.
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E-Chern class of the tensor product of line bundles is computed as a formal group law evaluated on the
constituents:

cE1 (η ⊗ ζ) = FE(cE1 (η), c
E
1 (ζ)).

(Crucial here is that, somehow, the map CP∞×CP∞ → CP∞ is very cool after hitting it with E∗.) In this
way, formal group laws are associated to complex-oriented spectra. The group law lives over E∗. Now, the
spectrum MU is tautologically complex-oriented, whence we get a group law FMU over MU∗ ∼= Z[x1, x2, . . . ].
Such a thing is classified by a map L→MU∗ and Quillen proved that this is an isomorphism.

We can push this a little further and show that MU is the universal complex oriented spectrum. To
state this precisely, recall that a complex orientation of a commutative ring spectrum E is a chosen class
xE ∈ E∗(CP∞) satisfying some properties. Something something something [Lur, Lecture 6], [Rog23,
Lemma 9.5.2]. finish

Proposition I.3.1.

That concludes the utmost basics. There is ground yet to cover:

(1) A bit more formal group theory—morphisms, strictness, the moduli of formal groups, height.

(2) The stacky perspective and how it informs chromatic—cooperations, Hopf algebras and algebroids,
and how to think about the height filtration.

(3) The p-typical story.

In practice, the enumerated topics are intertwined, but it is emotionally easier to sort and separate them.
Maybe some goals are to understand the statement “MU∗MU is the universal spectrum with two formal
group laws and an isomorphism between them," or “spectra are quasicoherent sheaves on Mfg," or “the
height filtration on Mfg reflects the chromatic filtration." Let’s see what exposition I can make here.

Here, maybe we can figure out why cooperations are important, motivate Hopf algebroids, and state the
universal property of MU∗MU . This is all maybe most coherently stated in the language of formal groups,
but this is sort of the point, so if we are to imagine ourselves foreign language students, it’s maybe good we
do not forego the work of translation.

Cooperations appear because of the Adams spectral sequence. This deserves its own entry, but for now
let’s be brief. Recall that cohomology operations, or generally transformations E∗(X)→ D∗(X) are induced
by homotopy classes of maps f : E → D. The Steenrod squares arise from maps Sqi : HFp → ΣiHFp, and
these generate the mod p Steenrod algebra A of endomorphisms of HFp. This is a graded non-commutative
algebra with a left action on H∗(X;Fp), natural in X. One notes that

A ∼= H∗(HFp;Fp) ∼= [HFp, HFp]−∗.

Dually, H∗(X;Fp) is naturally a left A∗-comodule, and we have A∗ ∼= H∗(HFp;Fp) ∼= π−∗(HFp⊗HFp). For
various reasons, e.g. because A∗ is commutative, it is easier to work with A∗-comodules. For one reason or Future en-

try: sub-
stantiate
this claim.

another, from this structure we are led to the mod p Adams spectral sequence.3 That’s why we care: this
helps us compute homotopy groups.

(Abrupt ending: I outsourced this project to Babytop 2025.)

I.4 (1/30) Categorical Descent III — Recap
Given objects X and Y , we may be interested in geometric structures G(X) and G(Y ) associated to them.
Perhaps there is a comparison G(X)→ G(Y ), and especially if this map somehow simplifies G(X), we should

3Future entry: elaborate.
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like to know what data was lost, and whether we can study this data and recover G(X) from it. This is
descent, which tries to formally equate

G(X) = G(Y ) + descent data.

The global sections for a sheaf of sets provide a prototypical example: a global section s is the same thing
as local sections si which agree on overlap. But note there is no descent data, as agreement on overlaps is a
property of local sections. We will come to understand this as a lack of (a choice of) higher coherences in a
categorical problem.

Before we get on with it, here’s an example of descent where we need one more level of coherence: consider
a presheaf of categories on a space. In fact, let’s just consider the whole functor Fix this

discussion.
Why did I
think this
functor was
a worthwhile
subject?
The point
is totally ob-
scured.

bun : Topop → Cat

given by X 7→ Top/X . We ask if this is a sheaf, and then we wonder what that even means. Let’s fix
a base space B. AA map Y → B can be recovered as maps fi : Yi → Ui together with identifications
tij : f−1

i Uij
∼−→ f−1

j Uji satisfying the 1-cocycle condition tjktij = tik. I think this amounts to a pullback
condition—more precisely, we have an equivalence

bun(B) ∼−→ lim
(∏

bun(Ui)⇒
∏

bun(Ui ×B Uj)→→
→∏

bun(Ui ×B Uj × Uk)
)
.

Encoded on the right-hand side are sections Yi → Ui and identifications tij , with the property of agreement on
triple overlaps Uijk. I think this limit must be formed 2-categorically for it to contain sufficient information,
c.f. Stacks Project Section 003O. The need for higher categorical limits in order to “correctly" express descent
is a recurring problem, and is effectively handled by working with∞-categories. That is the merit of today’s
writing, in which I hope to explain how descent is expressed ∞-categorically.

Remark I.4.1. Where I have said “I think," I am truly wary. I am also skeptical of this functor bun, which is
just the slice over functor. I had only in mind the example where the base B is fixed, and also the covering
{Ui}, I am not certain in what precise sense we can or should say bun is a “sheaf." Perhaps it is better to
consider the functor given by X 7→ Hom(X,B). Or perhaps one should consider a covering {Ui} and the
map

∐
Ui → B, and consider the induced functor Top/B → Top/

∐
Ui

.

There are two directions to develop the discussion so far: we can introduce monads or we can introduce
some simplicial language (or both). Today we will make the simplicial language.

We want to understand descent as a sheaf condition. For this, we work in the general setting of a site.
I will assume the ordinary notion as known; the ∞-categorical notion I will not bother defining for now.
Given a cover U = {Ui → X}i of an object X ∈ C, we define its Cech nerve

N•(U) : ∆
op → C

by [n] 7→
∏

Ui1...in and (obvious maps; e.g. coface δi : [n] → [n − 1] maps to inclusion into UJ with
i ̸∈ J). Generalizing the above discussion, we can now take a presheaf F ∈ Fun(Cop,D) and ask whether the
canonical morphism

F (X)→ lim
∆

F (N•(U)) (I.4.2)

is an isomorphism.4 If it is, then F (X) determines and is determined by its local sections and gluing data
(understood coherently), and we should say that F satisfies descent for the cover U. And as descent is the
sheaf condition, if F satisfies descent for every cover in the site’s topology t, we say F is a t-sheaf .

4If F does not preserve finite products, then the right-hand side should be interpreted as the limit of the complex with
vertices

∏
F (UI), so that the canonical morphism exists.
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Example I.4.3. Suppose that the presheaf F : Cop → D is valued in an n-category.5 I think that ∆≤n ↪→∆
is n-final in the sense that restriction does not change m-categorical limits for m ≥ n. Take n = 1 and D = Set
or n = 2 and D = Cat, then you recover the sheaf condition for presheaves of sets or categories (or groupoids)
discussed above.

Example I.4.4. I think I will consider the case of rings in a separate writing session.

5If n = 1, this means that D is the nerve of an ordinary category. If n = 2, perhaps this means the Duskin nerve? And if
n > 2, then I only mean this philosophically.

6



II February

II.1 (2/02) Categorical Descent IV — Faithfully flat descent and the sim-
plicial language

I separately planned to keep with my project of thinking about forms of descent, but recently there’s been
some intersection with my project to learn chromatic. That in mind, I want to present a classical and
important example of descent, that being faithfully flat descent for modules. There’s a homotopical version
of this that is sort of important in chromatic land. Let’s see what fun we can distill from the ordinary case.

Consider a map of commutative rings f : R → S. The basic question is: given an S-module M , can we
find an R-module M0 and an isomorphism S ⊗R M0 ∼= M? We are asking about filling in the following
diagram.

R S

M0 M

f

⌟

The data of such a filling, which we should think of as a descent datum, is a pair (M0 ∈ ModR, ϕ : f∗M0 ∼−→
M). We should like to organize these data into a category.

Here’s a fact: given such an (M0, ϕ), there is a canonical (S ⊗R S)-module isomorphism

τ : S ⊗R M ∼= M ⊗R S.

(This can be deduced a few different ways. It is rather tricky, and I am not sure if there’s a canonical
reference. I found Jacob Tsimerman’s lectures very helpful. Comment from the future: this is Stacks [Sta25, Read the

Stacks entry.Section 023F].) Moreover, τ satisfies a 1-cocycle condition in the sense that the following diagram commutes.

S ⊗R M0 ⊗R S

S ⊗R S ⊗R M0 M0 ⊗R S ⊗R S

τ⊗idid⊗τ

τ ′

We define a descent datum as an R-module M0 together with an isomorphism S ⊗R M0 ∼−→ M0 ⊗R S
satisfying the 1-cocycle condition. These data can be organized into a category Desc(f). There is an obvious
functor f∗ : ModR → Desc(f), and there is an obvious question: when is f∗ an equivalence?

Theorem II.1.1. If f : R→ S is faithfully flat, then f∗ : ModR → Desc(f) is an equivalence.

Proof. See Tsimerman’s notes. See also Section 03O6.

Taking Spec, we can translate the above discussion into one about affine schemes: “if Spec(S)→ Spec(R)
is faithfully flat and Z → Spec(S) is an affine scheme over Spec(S), then..." We would like to realize this as
an equivalence of categories, and for that, we will give another description of Desc(f). Observe that if f is
faithfully flat, descent begets an equalizer diagram Prove this

by hand.
M0 ∼−→ lim(M0 ⊗R S ⇒M0 ⊗R S ⊗R S).

More generally, to R → S is associated a cosimplicial R-algebra (S/R)• := R⊗•+1, and to an R-module
R→M0 is associated a cosimplicial (S/R)•-module (S/R)• ⊗M0. I think it is important here that we are
looking at not just a cosimplicial R-module, but a cosimplicial (S/R)•-module (why? I think this is where
homotopy theory can enter the picture...)

Example II.1.2 (c.f. Section 023F). One notices that M0 ⊗ (S/R)• extends the equalizer diagram above.
The limit over the full diagram is usually called the totalization of M0⊗(S/R)•. Higher descent asks whether
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the totalization recovers M0. On the one hand, this is a harder ask, since the totalization diagram is more
complicated; on the other hand, since M0 is "just" a module (as opposed to a cosimplicial one), this might
degenerate to the original situation. Well, from a descent datum (M0, τ) for f : R→ S we can functorially
build a degenerate cosimplicial (S/R)•-module M0

• . (How?) This describes a functor

Desc(f)→ Fun(∆,Mod(S/R)•).

Under this construction, the canonical descent datum (M0⊗RS, τ) yields M0⊗(S/R)•. Under Dold-Kan, we
can turn M0

• into a cochain complex s(M0
• ). Now we can give an alternate description of descent data, and

our intuition on the second hand was correct: if f is faithfully flat, then ModR → Desc(f) is an equivalence,
with inverse given by (M0, τ) 7→ H0(s(M0

• )).

In the example, we asked about descent for modules and passed to simplicial junk to factor an inverse-
to-be for ModR → Desc(f), and concluded that this really did yield an inverse when f is faithfully flat. Now
let’s do something along these same lines, but starting from f : Spec(S) → Spec(R). We can form a Cech
complex

Z := (SpecS/SpecR)• := (Spec(S)→ Spec(S)×SpecR Spec(S)⇒ . . . ) .

In the category Sch∆
op

, there is an obvious factorization f : Spec(S) → Z → Spec(R). Let c : Z →
Spec(R) be the latter map. This induces a pullback of quasicoherent sheaves on simplicial schemes c∗ :
QCoh(SpecR)→ QCoh(Z).
Remark II.1.3. Hold on, wait, what’s a (quasicoherent) sheaf on a simplicial scheme X•? We first define
a site XZar whose objects are the opens of the Xn and whose morphisms/covers are the obvious ones (c.f.
[Sta25, Section 09VK]). A sheaf on XZar is equivalent data to a system of sheaves on Xn with compatible
cosimplicial maps Xm → Xn for each [m]→ [n]. In particular, we can define the structure sheaf OX• as that
which specifies to OXn

on every Xn. It is a sheaf of rings on the site XZar, so we can define its module sheaves
and their children (quasicoherent, finite presentation, coherent, etcetera). But here’s a hiccup: the general
definition of (say) quasicoherent sheaves does not precisely reproduce "a system of quasicoherent sheaves
Fn for each Xn!" Rather, QCoh(XZar) is equivalent to Cartesian OX• -modules whose restrictions Fn are
quasicoherent OXn -modules. This is important here, because the “obvious" definition of c∗ as pulling back
a system of quasicoherent R-modules must be verified to produce cartesian systems. This is also important
for another reason, see the final sentence of this section.

Now, I think the maneuver is to interpret QCoh(Z) as6 our category of descent data and prove that c∗

is an equivalence if f is faithfully flat.

Theorem II.1.4. If f : R→ S is a faithfully flat map of rings, then

...

form an equivalence of categories.

I think the interpretation of QCoh(Z) as descent data is one of the important takeaways here. An important
detail is that when you unwind the definition of a quasicoherent sheaf on Z, you get a system of quasicoherent
modules (S⊗n →M0

n)n, and this system comprises a descent datum because it is cartesian (this is basically
the definition of a cartesian sheaf). Find a refer-

ence for this.
Check the
details.

Remark II.1.5. How to frame this discussion so that the module and scheme discussion can be most concisely
compared? In both situations, for instance, we sort of flip-flopped around between ordinary and (co)simplicial
stuff...
Remark II.1.6. Recap: notice we did what we intended, that is we reinterpreted Desc(f). The goal was
to realize it as a category of quasicoherent sheaves, with the secret example of chromatic in mind. This
required forming QCoh of a simplicial sheaf, though, but miraculously the abstract definition of such a thing
produces a system of modules with the added data (property?) of being cartesian, which is basically what
you need for a descent datum.

6Or should one imagine QCoh(Z) as the category of "higher" descent data? Tyler and I convinced ourselves that it is not a
category of higher descent data, or rather there is no such thing for f , because f is only a map of ordinary rings/affine schemes.
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That was a longer entry, and I learned a good deal writing it. Let’s reflect.

• I started by defining a descent datum for rings/modules. This is rather unintuitive, only explained by
the geometric/Spec story. We already hit everything with Spec later, perhaps best to start with affine
schemes? But still want to develop the algebra...

• In general, I think the dual algebra/geometry stories inform one another at different times. If I were
to reproduce this discussion for exposition, I may want to be more deliberate in my separation and
comparison of the two situations.

• I sort of forgot that QCoh(Z) was supposed to be our category of descent data, so I should have
emphasized that more. Also, I could explain better, and maybe make it more explicit, the way in
which QCoh(Z) encodes descent data.

• I need to do more algebra... Let’s maybe wrap up with an exercise.

Here’s the basic algebra fact that one might take as a starting point to faithfully flat descent.

Proposition II.1.7. If f : A→ B is a faithfully flat ring map, then the following is an equalizer diagram.

A B B ⊗A B
f

1⊗b

b⊗1

There are a few ways to rephrase the conclusion that are maybe fun to think about: it asks that A →
B ×B⊗AB B be an equivalence, or equivalently that 0→ A→ B ⊕B → B ⊗B → 0 be exact. Unwind that

last state-
ment?Proof. We will prove a more general statement, by a long-winded approach touching upon some details

overlooked in the above discussion. Let M be an A-module. Recall we defined a cosimplicial B-module
(B/A)• and the (B/A)•-module (B/A)• ⊗M . Formally analogous to the case of sheaves on a site, we may
call (B/A)• the Cech nerve of f : A → B, and (B/A)• ⊗M is the cosimplicial object whose limit we hope
to recover as M , in which case we might say −⊗A M satisfies descent for f .

Dold-Kan gives a map s : Mod∆B → CoCh≥0(ModB) under which (B/A)• is given maps (B/A)n →
(B/A)n+1 given by

∑
i(−1)iδi[n]→[n+1]. Now, consider

M M ⊗B M ⊗B ⊗B.
m 7→m⊗1 m⊗b 7→m⊗b⊗1−m⊗1⊗b

We will prove that this is exact. In fact, we can prove something even stronger: we recognize this as part of

Z := s(M ⊗ (B/A)•) = 0→M →M ⊗B →M ⊗B ⊗B → . . .

And we will show this cochain complex is exact. Since f is faithfully flat, this is equivalent to the exactness
of Z ⊗B. Now here’s a trick: Z ⊗B is equivalent to s((M ⊗B)⊗ (B ⊗A B/B)•)! That is to say, there is a
natural equivalence

s(M ⊗ (B/A)•)⊗B ∼= s((M ⊗B)⊗ (B ⊗B/B)•).

Sounds like a mouthful, and I do not have a reference, but we have reduced to checking the latter is exact,
and the latter is the cochain complex obtained from ∆f : B → B ⊗A B which has a section b ⊗ b′ → bb′.
The point is that we can assume f has a section, and this section allows one to witness every cocycle as a
coboundary explicitly, c.f. [Alp24, §2.1.1].

Remark II.1.8. What is a good way to think about the role of the diagonal here?

Remark II.1.9. Writing from the future: what I am trying to say in the proof is basically what [Sta25,
Section 023F] is trying to say! Let me grab a coffee and summarize this.
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We are considering a homomorphism f : A→ B and its induced f∗ : ModA → Desc(f). We call a descent
datum effective if it belongs to the image of f∗, and f∗(M0) is called the canonical descent datum associated
to M0. In an attempt to construct an inverse, we consider the functor

Desc(f)→ Mod∆(B/A)• .

The well-definedness of the general definition (N, τ) 7→ N• requires a little work to verify, for which the
cocycle condition is crucial. We know what this functor does to canonical descent data: it sends (M0, can)
to (B/A)• ⊗M0. We also have a functor

s : Mod∆(B/A)• → CoCh≥0(Mod(B/A)•)

and again, we can describe its effect on (the image of) canonical descent data (M0, can): we have

s((B/A)• ⊗M0) = (B ⊗M → B ⊗B ⊗M → · · ·) .

The kernel of the first map b ⊗m 7→ b ⊗ 1 ⊗m − 1 ⊗ b ⊗m is M , so we can extend this cochain complex
as 0→M → s(...). (I want to say that this is an adjoint to one of the good truncations CoCh→ CoCh≥0.)
Now, here’s a fact.

Proposition II.1.10. If f : A→ B admits a section, then 0→M → s((B/A)• ⊗M) is exact.

Proof. Generally, if a morphism X → Y in C has a section, then the constant cosimplicial object X• is
equivalent to (Y/X)• assuming the latter can be formed. In our case, we can tensor with M (since functors
preserve cosimplicial equivalences) and get M ≃ (B/A)• ⊗M . Now, Dold-Kan is homotopical, so observe
that the constant complex on M is exact and DK((B/A)• ⊗M) is what we wanted to show the exactness
of.

Now here’s the trick. If g : A → C is faithfully flat and the associated complex for C → B ⊗A C is
exact, then we can conclude 0 → M → (B/A)• ⊗ M is exact. (This is a definition chase, c.f. [Sta25,
Lemma 023M].) The point is that when f is faithfully flat, we have an obvious candidate g = f , in which
case we’re checking ∆f : B → B ⊗A B. The diagonal has a natural section, so the proposition concludes
0→M → s((B/A)• ⊗M) is exact.

The point is that when f is faithfully flat, we know where effective descent data goes under the composition
Desc(f) → Mod∆(B/A)• → CoCh≥0(Mod(B/A)•). Namely, it goes to the complex s((B/A)• ⊗M) which has
H0 ∼= M and trivial higher cohomology. This turns out to characterize the effective descent data:

Proposition II.1.11. If f : A→ B is faithfully flat, then a descent datum (N, τ) is effective if and only if
the canonical map B ⊗A H0s(N•)→ N is an equivalence.

Now one can exhibit the equivalence Desc(f) ∼−→ ModR. (...)

II.2 (2/14) Categorical Descent V — fpqc, fppf

The art of doing mathematics
consists in finding that special
case which contains all the germs
of generality.

David Hilbert

Recall that a quasicoherent sheaf on a scheme X is an OX -module which is affine locally the (sheaf
associated to the) module of global sections; if X is already affine then ModOX

∼= ModR. Just as with modules,
we can ask about descent for QCoh(X). The most efficient expression for this is adapted from a fact for
modules: a (faithfully) flat ring map f : A→ B is characterized by the (faithful) exactness of f∗ = (−)⊗AB.
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We define a faithfully flat map of schemes f : X → Y as one for which f∗ : QCoh(Y )→ QCoh(X) is faithfully
exact. As an exercise, let’s unwind this definition a little. We first return to a ring map f : A → B and
assume f is flat. We ask what it means for f to be faithful (i.e. for f∗ to be faithful, i.e. for f∗ to reflect
exact sequences).

Proposition II.2.1. Let f : R→ S be a flat ring map. Then f is faithful if and only if Spec(S)→ Spec(R)
is surjective.

Proof. [Sta25, Tag 00HP].

Likewise, we may suppose that f : X → Y is flat and ask for a geometric description of its faith. (Flatness
is defined Zariski-locally.)

Proposition II.2.2. Let f be a flat morphism of schemes. Then f∗ is faithful if and only if f is surjective.

Remark II.2.3. Todo: in case of modules, check that reflecting exact sequences implies faithfulness. In case
of schemes, find a reference...

Now it turns out that for schemes, faithful flatness is a bit too weak for good descent phenomena. Say
f : X → Y is fpqc if it is faithfully flat and every qc open U ′ ⊂ Y occurs as f(U) for a qc open U ⊂ X.
These include fppf and faithfully flat, quasicompact maps. We can extend faithfully flat descent for modules
to fpqc morphisms:

Proposition II.2.4. Suppose that f : X → Y is an fpqc map of schemes.

(1) Given F,G ∈ QCoh(Y ), the following sequence is exact.

HomOY
(F,G) HomOX

(f∗F, f∗G) HomOX×Y X
(q∗F, q∗G)

f∗ p∗
2

p∗
1

(2) Suppose as given an H ∈ QCoh(X) and an isomorphism α : p∗1H
∼−→ p∗2H satisfying p∗23α◦p∗12α ∼= p∗13α.

Then there exists a unique (M0, ϕ) where M0 ∈ QCoh(Y ) and ϕ : f∗H ∼−→M0 is an isomorphism such
that p∗1ϕ = p∗2ϕ ◦ α.

Proof. This is [Alp24, Prop 2.1.4]. Would be a good idea to come back to this proof. Also maybe §3 in these
notes. Come back

to the proof
Remark II.2.5. It is clear from (2) how to define the category Desc(f). There is an obvious functor f∗ :
QCoh(Y ) → Desc(f), and conclusions (1) and (2) say that it is fully faithful and essentially surjective,
respectively.

In fancier language, the proposition says that QCoh is a stack in the fpqc topology. Later we will make
this our standard terminology and make a good theory for stacks; for now, however, more examples. Recall
in the topological case my (crude) attempt to explain how the functor X 7→ Top/X demonstrates stack-like
properties. Well, here’s something that looks similar, at least with respect to fpqc morphisms.

Proposition II.2.6. Let f : X → Y be an fpqc morphism of schemes. For any morphism g : X → Z
equalized by the projections p1, p2 : X ×Y X → Y , there exists a unique h such that the following diagram
commutes.

X ×Y X
p1 //
p2

// X
f //

g
##

Y

h

��
Z
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This translates to Hom(−, Z) being a stack in the fpqc topology. There is an analogous statement in the
relative situation for Sch/S . (Later, we say these are statements about stackiness over the "big" and "small How to com-

pare to
prestack
sending
scheme Z to
morphisms
of algebraic
spaces to
Z? This is
"really" the
stack I was
alluding to
earlier.

(over S)" fpqc site.)

A morphism f : X → Y is called fppf if it is faithfully flat and locally finitely-presented. These morphisms
are fpqc, hence the previous descent phenomena apply, however one can say more.

II.3 (2/26) Chromatic V — Formal groups
Two Babytalks have passed. Yesterday, Oakley reviewed "MU -theory," defined formal groups, and suggested
the perspective that spectra (via their MU -homology) are quasicoherent sheaves on Mfg. I have neglected
my chromatic notebooking in favor of organizing Babytop, first to avoid wasteful overlap, and second, to
learn more before writing things down. Now that we have covered some ground (and also not covered some
ground), I’m more confident I can say something useful and productive. Today I want to think about formal
groups.

• Piotr’s notes [Pst] are a great reference. One goal of the seminar is to get everyone comfortable with
the language of these notes (or, say, Lurie’s notes, or Goerss’s notes).

The natural context for a formal group is the category of formal schemes. These are not exactly ind-
schemes, although there’s a relationship that’s yet unclear to me—but in any case, we care about the local
geometry of our formal schemes, so a study from the ground up is quite necessary.

Functor-of-points compels you to identify a commutative ring A ∈ CRing with its presheaf Spec(A) :=
HomCRing(A,−) ∈ Fun(CRing,Set). An ideal I ⊂ A has an associated I-adic completion ÂI := lim(A/I ←
A/I2 ← · · · ), and dually we define the associated formal completion of X := Spec(A) along the closed
subscheme Z := Spec(A/I) as the colimit

X̂Z(−) = colimHomCRing(A/In,−).

In words, X̂Z is the subfunctor of Spec(A) which associates to B those morphisms A→ B annihilating some
In (hence vanishing near zero). A functor CRing→ Set of this form is called an affine formal scheme.

Remark II.3.1. The filtration A ⊇ I ⊇ I2 ⊇ · · · induces an cofiltered/inverse/projective system A/I ←
A/I2 ← · · · . The limit topology on ÂI is the initial having every ϕn : ÂI → A/In continuous with respect
to the discrete topology on A/In. It is linearized by the kernels ker(ϕi), i.e. it is the associated filtration
topology. The canonical Aadic → ÂI is continuous, in fact it is the initial map to a separated, Cauchy
complete, linearly topologized ring [Sin11, 8.2.4]. This includes any ring with the discrete topology; moreover
observe the (0)-adic topology is discrete, so you make this a statement about Hom-sets of (complete adic
rings? But what about I not finitely-generated?)

Definition II.3.2. Consider A with an I-adic topology. A continuous ring map Aadic → Bdisc is a ring
map A→ B such that some In is annihilated, whence we can identify

colimHomCRing(A/In, B) ∼= Homcts
CRing(A

adic, Bdisc) ∼= HomCRing(ÂI , B).

Thus, the affine formal scheme arising from (A, I) depends only on the topology Aadic and not the specific
ideal of definition I. The resulting sheaf is often called the formal spectrum Spf(A).

Example II.3.3. The formal affine line over R is the formal spectrum Â1
R := Spf(R[[t]]) where R[[t]] carries

the t-adic topology. In effect, Spf(R)(S) consists of pairs (R→ S, x) of R-algebras and a choice of nilpotent
element. In particular, Â1(S) := Spf(Z[[t]])(S) = Nil(S).
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Definition II.3.4. Let F be a formal group law over R. Its associated formal group is the functor

GF : AlgR → Ab given by S 7→ (Nil(S), x+ y := F (x, y)).

Thus, the formal group GF is the lift of CRingR/

Â1
R−−→ Set to Ab defined by designating F as the group

operation. We can ask about the set of such lifts, i.e. the set of abelian group structures on Â1
R. Before

specifying to studying maps (Â1
R)

2 → Â1
R, we may consider maps from an (almost) arbitrary Spf(A).

Proposition II.3.5. If an R-algebra A is I-adically complete, then Hom/Spec(R)(Spf(A), Â1
R)
∼= Niltop(A).

Proof. Acknowledge the monomorphism Â1
R ↪→ A1

R, and we can now first figure

HomSpec(R)(Spf(A),A1
R)
∼= limHomSpec(R)(Spec(A/In),A1

R)
∼= limHomAlgR

(R[t], A/In) ∼= A.

The last equivalence is due to completeness. Now we ask which a ∈ A factor through Â1
R ↪→ A1

R, and by the
magic of monomorphisms this just means computing

HomSpec(R)(Spf(A), Â1
R)
∼= limHom(SpecA/In, Â1

R)
∼= limHomcts(R[[t]], A/In).

I think the RHS just unwinds to Niltop(A). Wait, could I have just done that to start? Unwind and
check this...

Corollary II.3.6. There is a bijection

Homét,/Spec(R)(Ân
R, Â1

R)
∼= {F ∈ R[[x1, . . . , xn]] : F has nilpotent constant term}.

It follows that abelian monoid structures (automatically grouplike) on Â1
R for which zero is a unit are in

bijection with formal group laws over R. This makes the following definition a bit easier to digest.

Definition II.3.7. A formal group over Spec(R) is an abelian group object

G ∈ Shvét(CRingR/,Ab)

such that Zariski locally, G takes the form of a formal group associated to some formal group law.

Remark II.3.8. What a word salad. Let me unwind this. Before all else, G is an étale sheaf AlgR → Ab.
Moreover, there exists a finite list of elements f1, . . . , fn ∈ R such that (f1, . . . , fn) = R and for each
restriction G|i : AlgRfi

→ Ab, there exists an isomorphism G|i ∼= GF for some F .

Example II.3.9. The most important example: if E is complex-orientable, then Spf(E∗CP∞) is a formal
group over E∗. To explain, we will assume E∗ = π∗E is even, which avoids some unfathomable problems.
By orientability, there exists an isomorphism E∗CP∞ ∼= limE∗CPn by which we can give E∗CP∞ the limit
topology. We may well enough form

AlgE∗
Spf(E∗CP∞)−−−−−−−−→ Ab

and try to realize Spf(E∗CP∞) as some GF . A choice of orientation t ∈ E2(CP 1) determines an isomor-
phism E∗CP∞ ∼= E∗[[t]], and this isomorphism is t-adically continuous. We may write Spf(E∗CP∞)(S) =
Homcts

E∗(E∗[[t]], S) = Nil(S). The group structure on this hom-set comes from that on E∗[[t]], hence from
E∗CP∞, hence from the tensor product of line bundles, which is the formal group law we know and love.

In the next entry, I want to collab with my Categorical Descent musings to form the moduli stack
Mfg of formal groups, and explain how the geometry of Mfg informs our understanding of spectra.
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III March

III.1 (3/1) The Picard group of a category
Given a (commutative) monoid M , one may form its (commutative) group of units M×, and there is an
obvious functor M 7→M× which is right adjoint to the inclusion Gp ↪→ Mon. The homotopy-coherent story
asks about a right adjoint to the inclusion

Sp≥0 ↪→ CMon(S).

III.2 (3/4) Descent & Chromatic VI — A map MMU : Sp→ QCoh(Mfg)

III.3 (3/7) Spectral Sequences I
An often sufficient (but not necessary) way to recognize an algebraic topologist is look for an ability to
maneuver spectral sequences. I have said before that my formal topology training was not well-formed,
and I’m unfamiliar with spectral sequences as a result. Andy is giving some number of lectures introducing
spectral sequences, and he’s the good stuff, so I will be writing some things down related to what he says.

Here’s sort of the basic germ of the way that (Serre) spectral sequences arise in algebraic topology.
Consider the Hopf fibration

S1 ↪→ S3 ↠ S2.

Fibrations induce long exact sequences in homotopy. What can be said about homology? The answer is
more sophisticated than a long exact sequence. Homology is built out of simplices, so we wonder how a
fibration induces some disfigurement of simplices. Fix a relative homeomorphism σ : (∆2, ∂∆2) ∼−→ (S2, ∗),
which determines a generating cycle [σ] ∈ H2(S

2).7 Since ∆2 ∼= I2, the lifting property gives us a filling

∗ S3

(∆2, ∂∆2) S2

pσ̄

σ

The resulting 2-simplex σ̄ is not a cycle—this would require its boundary be trivial, but the lift has an
"error" term: it need only map ∂∆2 to a fiber circle S1, in fact8 it must wind nontrivially around S1, in
fact it must generate H1(S

1). In this sense, the generator of H2(S
2) failed to lift to H2(S

3) because it was
obstructed by the nontriviality of its boundary in H1(S

1). We’ve learned some things:

(i) We realized the generator of H1(S
1) as a boundary in S3, so H1(S

1)→ H1(S
3) has trivial image.

(ii) It is impossible to lift the generator of H2(S
2) to H2(S

3), so H2(S
3)→ H2(S

2) has trivial image.

One deduces that H1(S
3) and H2(S

3) are trivial. (How exactly does this follow?) One should view the
described map d : H2(S

2) → H1(S
1) as controlling the situation, in particular its nontriviality has conse-

quences. This is our first example of a differential.

Remark III.3.1. If we instead consider the trivial bundle S1×S2 → S2, one could compute H∗(S
1×S2) via

Künneth; this fails for the Hopf fibration, as Künneth predicts "too many" elements of H1(S
3)and H2(S

3),
coming from H1(S

1) and H2(S
2), respectively. Above we described a nontrivial map d : H2(S

2) → H1(S
1)

induced by the Hopf fibration (an isomorphism); the analogous map induced by S1 × S2 → S2 is trivial.
These facts are not coincidental: the map d is our first example of a differential, whose nontriviality is
strongly related to Künneth’s misprediction.

7Maybe you need [σ − ∗]?
8Why is this true? Does one use the nontrivial fiber bundle structure? How to phrase this using only the fact that p is a

fibration?
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Above, our answer to "what can we say about homology given a fibration?" was answered in the example
of the Hopf fibration. We used the HLP to extract an algebraic map d which told us things. This is a
simple example of an algebraic structure which is generally complicated, which we define now. The generic
machinery is derived from filtrations, and we will specialize back to the case of spaces and fibrations via
skeletal filtrations.

We start by considering a chain complex C• and a filtration by subcomplexes

F0C• ⊆ F1C• ⊆ · · ·

Note that the boundary for C• moves orthogonal to the filtration, i.e. it has bidegree (0,−1). For example,
if x ∈ FsC5, then dx ∈ FsC4. If we are interested in the homology of C•, then we are interested in
dx, and our filtration coordinatizes an approximation of dx. This is the slogan which spectral sequences
formalize. The first step in describing this approximation is to form the "leading term" of dx as its quotient
[dx]s ∈ FsC4/Fs−1C4.

If [dx]s = 0, then we conclude dx ∈ Fs−1C4 and repeat for [dx]s−1 ∈ Fs−1/Fs−2. To formalize this, we
form the associated graded pieces

0→ Fs−1C• ↪→ FsC• ↠ grsC• → 0 ⇝ gr•C :=
⊕
i

griC.

The associated graded gr•C is a graded object in chain complexes. In our example of x ∈ FsC5, we sought to
understand dx ∈ FsC4, and we proposed to interpret [dx]s ∈ grsC4 as the "leading term in an approximation
of dx determined by the filtration." In the general setup, we will use the homologies of the complexes in
gr•C to track these approximations.

Definition III.3.2. We form the bigraded abelian group E0
s,t:= grsCs+t = FsCs+t/Fs−1Cs+t. The bound-

ary from C induces a bidegree (0,−1) differential d0: E0
s,t → E0

s,t−1.

Definition III.3.3. The homology of the bicomplex (E0
•,•, d

0) is a bigraded abelian group which we denote

Hs,t(E
0
•,•) =: E1

s,t.

Similar to gr•C, the E1
s,t form a bigraded abelian group.
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