
THE ADAMS CONJECTURE AND THE K-THEORY OF FINITE FIELDS

MATTHEW NIEMIRO

Abstract. Daniel Quillen’s proof of the Adams conjecture unexpectedly provoked his invention and initial
calculations of higher algebraic K-theory. For this, Quillen was awarded the Fields medal, and algebraic
K-theory today is the active focus of a serious portion of research in modern mathematics. This paper is a
self-contained and modernized presentation of this development. We prove the complex Adams conjecture
and calculate the K-theory of finite fields.
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1. Plan of the Demonstration

Throughout, we will consider a prime p , 2 and q a power of p. We will denote by kq a field with q
elements and by k an algebraic closure of kq.

We open in §2 with some history. We try to survey a neighborhood of Quillen’s invention of K-theory
within the space of mathematical history. This may help a reader get some context for and guidance
through the paper. It is hopefully an enriching account of “the story.”

In §3, we introduce the Adams operations Ψk. They are a basic and important part of the Adams
conjecture, whose proof by Quillen was a first step toward his definition of higher algebraic K-theory.
Later, we will need a slightly more general version of these operations; we develop them sufficiently in
anticipation of this.

In §4, we define the Brauer lift, whose main purpose is to produce maps BG → BU from k-
representations of a finite group G. We investigate in particular those Brauer lifted maps arising from
kq-representations. These will be important for the development of K-theory. We will see that if a k-
representation extends a kq-one, then its Brauer lifted map BG → BU is homotopically invariant under
the endomorphism Ψq : BU → BU representing the q-th Adams operation.

In §5, we state the Adams conjecture and sketch Quillen’s proof of it in the complex case. For us,
Quillen’s most important idea was to Brauer lift standard representations to obtain maps BGLn(kq) →
BU for every n and kq. These assemble to a map BGL(k) → BU that induces a mod ℓ homology
equivalence for every prime ℓ , p. This foreshadows Quillen’s initial work on K-theory, which starts by
asking how the story changes when we fix q and consider the map

BGL(kq)→ BU (1.1)

constructed by the same process—for starters, it is no longer an equivalence.
In §6, we introduce a space FΨq as the homotopy fixed points of Ψq : BU → BU, and equivalently

as the homotopy fiber of Ψq − 1. Both points of view are important. Thinking of FΨq as homotopy fixed
points, the idea is that if a map BG → BU is Brauer lifted from a kq-representation, since it is homotopy
fixed by Ψq : BU → BU we might hope to reinterpret it as a map BG → FΨq. This is possible under
the right conditions. In particular, we may lift our map (1.1) to a map

θ : BGL(kq)→ FΨq, (1.2)

the explicit construction of which is given in this section. The remarkable fact is that θ is an integral
homology equivalence. The proof as in [Qui72] is hard.

In §7, we define the plus construction X+ of a space X and define the K-theory (in positive degrees) of
a ring R as the homotopy groups of BGL(R)+. Since the map (1.2) is an integral equivalence, it happens
that on passage to the plus construction θ induces a weak homotopy equivalence θ+ : BGL(kq)+ ∼−→

FΨq. The homotopy groups of FΨq are readily computed from the long exact sequence in homotopy of
a homotopy fiber, and thus the K-theory of finite fields is determined.
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2. Historical Notes

In [Ada60], Adams solved the famous Hopf invariant one problem through a detailed analysis of
higher operations on ordinary cohomology. He then tried this approach on the vector fields on spheres
problem, which asks for the maximal number of linearly independent tangent vector fields one may put
on S n at once. Here he was less successful, with only partial results appearing in [Ada62b, received
1960]. But operations were the right avenue. In a second attempt [Ada62a, received 1961], Adams had
the nascent idea to replace higher operations on H∗ with simpler, primary ones on K-theory. Namely,
he constructed the Adams operations Ψk and showed that these Ψk describe structure on K-theory with
which “having too many vector fields” is incompatible. More precisely, Adams used the properties of
Ψk to show that S n could not admit more than a certain number ρ(n) − 1 of independent vector fields,
and it was already known to have at least ρ(n) − 1.

Meanwhile in [Ati61], Atiyah defined1 and studied a certain quotient J(X) of the group K(X) of
vector bundles over X. These groups J(X) generalize the J-homomorphism from classical homotopy
theory2 and live in the world of vector bundles and fibrations. On the tailwind of his invention of Ψk

and considering the relation to homotopy theory, Adams saw an opportunity: one can exploit theory on
the bundle side (in particular, Ψk) to study J(X) and leverage this to understand the homotopy groups of
spheres in particular. This was Adams’ next project, the result a fundamental four-paper study of J(X)
[Ada63, Ada65a, Ada65b, Ada66].

We can oversimplify Adams’ work easily enough. For X a finite CW complex, J(X) is the group K(X)
of vector bundles over X modulo “fiber homotopy equivalence.”3 Adams plotted to compute J(X) by
introducing two other quotients J′(X), J′′(X) which would capture J(X) in a diagram of epimorphisms:

J′′(X)

K(X) J(X)

J′(X)

One thinks of J′(X) and J′′(X) as lower and upper bounds for J(X), respectively. In particular, if J′(X) �
J′′(X), then either recovers J(X). The main thrust of Adams’ first three papers is that J′(X) and J′′(X)
are computable and always coincide; the Adams operations Ψk play a basic and important role here. The
fourth paper applies these results to calculate essential—and at the time, mysterious—structure in the
homotopy groups of spheres.

Characteristically, Adams’ work on J(X) stimulated lots of new mathematics. There is for example
chromatic homotopy theory, wherein the “chromatic picture” partially grew out of attempts to explain
periodic phenomena in πs

∗ revealed by Adams’ work. Another example, the subject of this paper, is
higher algebraic K-theory. The relation here is strongly causal. Quillen’s original construction of K∗
would have been inconceivable without the context provided by Adams’ work, specifically the Adams
conjecture. Let us sketch the precise story.

The Adams conjecture roughly says that Ψk does not change J(X). It is discussed in Adams’ second
paper and proved in special cases. The conjecture is an essential part of Adams’ work, for as k varies it
produces upper bounds on J(X) from which one extracts J′′(X) as the “best bound.” This is made precise
by defining J′′(X) as a certain quotient of K(X), in fact by a subgroup of the kernel of K(X) → J(X),
thus fitting J′′(X) into the diagram above.

As for the relation to algebraic K-theory, the proof is the pudding. In [Qui71], Quillen proved the
Adams conjecture via algebraic topology, for which he constructed a “Brauer lifted” map BGL(k)→ BU

1Atiyah only defined the reduced version of J(X).
2The classical situation is recovered by taking X = S n for n > 1. In this case, the reduced version of J(S n) is identifiable with
the image of the classical map πn−1(O) → πs

n−1 via a clutching construction. In particular, the J(S n) determine cyclic direct
summands of stable homotopy groups. Then the hope was that these “pieces” of π∗s are calculable and interesting (they are).
3This means we identify [Ψ] ∼ [η] if their associated spherical bundles are equivalent as fibrations.
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and showed it to be a mod ℓ homology equivalence for every prime ℓ , p. This sufficed to prove the
Adams conjecture. It was natural to then ask how to extend Quillen’s methods to study a “Brauer lifted”
map BGL(kq) → BU at the discrete levels q = pr, which needs a bit more work. This was carried out
in the seminal [Qui72]. This map BGL(kq)→ BU is no longer an equivalence, but it turns out to induce
a map BGL(kq) → FΨq which is an integral homology equivalence. This space FΨq is tractable, and
via the equivalence BGL(kq) → FΨq one learns about BGL(kq). Now for various reasons [cf. [Cla]],
Quillen divined from his work a definition of the higher algebraic K-theory of kq:

Kn(kq) := πn(BGL(kq)+), for n > 0, (2.1)

and the established homology equivalence sufficed to completely determine πn(BGL(kq)+) and thus
Kn(kq). Here, the + indicates the plus construction.4 The constructions in Definition (2.1) work for
any ring R in place of kq, leading Quillen to one of the first definitions5 of higher algebraic K-theory:

Kn(R) := πn(BGLn(R)+), for n > 0.

A short while later in [Qui73], Quillen proposed a totally different definition using the Q-construction
which he also defined. It is categorical rather than homotopical and begets important generalizations. The
“+ = Q theorem” states that these two definitions are equivalent—if there was doubt that Quillen’s orig-
inal definition was the right one, it vanished with this result. In this way, Quillen initiated the study of
algebraic K-theory proper and gave it calculational and theoretical footing, for which he was awarded
the Fields Medal in 1978.

· · ·

We close with an amusing remark. Quillen’s proof of the Adams conjecture described above was
neither the first nor the last. Quillen had sketched the first proof in 1968, modulo a nontrivial conjecture
and taking a very different path through algebraic geometry. It uses the etale homotopy theory which
Artin and Mazur had recently developed, whose rough purpose was to lift an affirmed Adams conjecture
for mod p varieties to the topological setting. Friedlander completed this sketch in 1970. Sullivan then
gave another highly influential proof in 1970, also using algebraic geometry and etale homotopy. At
this point one should wonder about a simpler proof via algebraic topology, and this was motivation for
Quillen’s second proof. But a short while later in 1974, another algebro-topological proof was found
by Becker and Gottlieb—much more elementary than Quillen’s, taking about two pages to his fourteen,
appearing as part of an overall ten-page paper. The reader now asks how K-theory would have developed
had the timing been only a little different.

4We will review this in §7. This construction changes a space’s fundamental group and preserves its (co)homology.
5By this time, the lower groups K0,K1, and K2 had been studied for 20-30 years. Certain exact sequences and the analogy with
topological K-theory begged a full-blown algebraic K-theory Kn for all n ≥ 0, several definitions of which were proposed in
the late 60’s. Quillen’s was the first widely-accepted definition. A good, brief account of the state of higher K-theory at the
time is [Swa70].
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3. The Adams Operations

The Adams operations Ψk are certain cohomology operations on K-theory. They are important to
Adams’ work on J(X), in particular the Adams conjecture which we will discuss in the next section.
These Ψk extend the exterior power operations on bundles; more generally, given any ring R with struc-
ture comparable to exterior power operations, one can construct Adams operations Ψk : R → R. Such
rings are called λ-rings. We will not generally develop λ-rings, but we will need to consider Adams
operations on rings other than K-groups, namely complex representation rings. We introduce these op-
erations now and record some basic properties.

Proposition 3.1. Let K denote either real or complex K-theory. For each k ≥ 0, there exists a unique
natural transformation Ψk : K(−) → K(−) such that ψk[L] = [L⊗k] for every line bundle L → X. These
Ψk are the Adams operations on K-theory.

Unqiueness here is a consequence of the splitting principle. These operations are ring homomorphisms.
Now, consider the set RepC(G) of complex representations of a finite group G. It is an abelian

monoid under the direct sum of representations, hence we may consider its group completion RC(G),
the complex representation ring. Its multiplication is induced by the tensor product of representations.
We may take exterior powers of representations, and this gives RC(G) the structure necessary to possess
Adams operations.

Proposition 3.2. Consider RC(−) as a functor on the category of finite groups. For each k ≥ 0, there
exists a unique natural transformation Ψk : RC(−) → RC(−) such that Ψk(ρ) = [ρk] for every linear
representation ρ : G → C×. These Ψk are the Adams operations on RC(G).

Uniqueness here is a consequence of Brauer’s induction principle. These operations are also ring homo-
morphisms.

The Adams operations on both K-theory and RC(G) may be given explicitly as Newton polynomials
evaluated on exterior powers. In the case of RC(G), the operations can be described more simply by their
effect on characters (and this also suffices to define them).

Proposition 3.3. Denote by χV the character of a representation V. The Adams operations Ψk satisfy
the equation

χΨkV (g) = χV (gk), ∀g ∈ G.

3.1. Operations as endomorphisms of BU. The Adams operations restrict to operations on reduced
K-theory K̃. Thinking of the Yoneda lemma, we should like to represent the operations Ψq : K̃ → K̃
with endomorphisms Ψq : BU → BU. However, the Yoneda lemma does not apply since K-theory is
not defined for infinite-dimensional complexes such as BU. We can get around this, and in the process
describe how to represent operations on K̃ generally, which will be useful later.

For n ≥ 1, we may give BUn a CW structure whose skeleta Xm have trivial odd-dimensional co-
homology. This is standard, see e.g. [MS74]. The Milnor exact sequence then degenerates to yield
[BUn, BU] � lim

−−→
[Xm, BU]. We get the desired correspondence

[BUn, BU] � {natural transformations (K̃)n → K̃}.

By this correspondence, we may represent operations such as the Adams operations Ψq : K̃ → K̃ or the
difference map (K̃)2 → K̃ as endomorphisms BU → BU and BU × BU → BU, respectively.
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4. Brauer Lifting

In this section we describe Brauer lifting, a construction which lifts k-representations of a finite
group G to complex ones. Since complex representations give rise to (homotopy classes of) maps BG →
BU, we may also think of the Brauer lift as building maps BG → BU out of k-representations of G, and
this is primarily how we will use it. As we will see in §5, the lift was Quillen’s main technical innovation
in his proof of the Adams conjecture, where he used it to the great effect of producing a mod ℓ homology
equivalence BGL(k) → BU. Later in §6, it will be important to understand lifted kq-representations in
particular, so we discuss those here as well.

In what follows, fix an embedding ρ : k× ↪→ C× and a finite group G. The case in mind is G = GLnkq.

4.1. Lifting k- and kq-representations. Let E : G → GLnk be a finite-dimensional k-representation,
and let S E(g) ⊆ k× denote the set of eigenvalues of E(g) appearing with multiplicity. Define the Brauer
character of E, written χbr

E : G → C, by

g 7→
∑

λ∈S E(g)

ρ(λ).

A classical theorem of Green says that for any modular representation E ∈ Repk(G), there is a unique
virtual representation Ebr ∈ RC(G) such that χEbr = χbr

E . The Brauer character visibly satisfies χbr
E⊕W =

χbr
E + χ

br
W , hence E 7→ Ebr defines a morphism of monoids Repk(G) → RC(G). This extends uniquely to

virtual representations via group completion.

Definition 4.1. Let (−)br : Rk(G) → RC(G) denote the unique homomorphism extending E 7→ Ebr. We
call this the Brauer lift of k-representations of G.

Regarding the Brauer lift, there is something to be said about those k-representations which extend
kq-representations. By “extend” we are referring to the extension of scalars, which defines a homomor-
phism

− ⊗kq k : Rkq(G)→ Rk(G).

We write E for E ⊗kq k. Recall (Proposition 3.3) that the Adams operations act straightforwardly on
characters: one has χΨqE(g) = χE(gq). Thus, the representations E fixed byΨq are exactly those for which
χE(gq) = χE(g). This is the case in particular if χE is the Brauer character of V for some V ∈ Rkq(G), since
that Brauer character at g is a sum over S V̄ (g) which is stable under the Frobenius, i.e. S V̄ (g) = S V̄ (gq).
We get the following.

Lemma 4.2. If E extends a kq-representation, then Ebr isΨq-invariant. In symbols, the composite (−)br◦

(− ⊗kq k) defines a homomorphism

(−)br ◦ (− ⊗kq k) : Rkq(G)→ RC(G)Ψ
q
.

We call this composition the Brauer lift of kq-representations of G and also denote it (−)br.

4.2. Producing maps BG → BU. A complex representation V ∈ RC(G) classifies a complex bundle
EG ×G V → BG. This construction is natural, additive, and multiplicative on passage to isomorphism
classes, thus extends to a map

β : RC(G)→ K̃0(BG) � [BG, BU].

This is called the Borel construction or associated bundle. Now we can construct maps BG → BU out
of k-representations of G by way of the composition β ◦ (−)br. We may refer to maps produced this way
as Brauer lifted maps.

Again, more can be said for extensions of kq-representations. The Borel construction preserves
exterior powers, hence β commutes with the Adams operations Ψk on RC(G) and K̃0(BG). Noting
Lemma 4.2, the composition β ◦ (−)br therefore defines a homomorphism Rkq(G) → K̃0(BG)Ψ

q
. Identi-

fying K̃0(BG)Ψ
q
� [BG, BU]Ψ

q
gives the following.

Proposition 4.3. If E extends a kq-representation, then the Brauer lifted map BG → BU obtained from
E is homotopy invariant under the endomorphism Ψq : BU → BU.
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5. The Adams Conjecture

We now state the Adams conjecture and sketch Quillen’s proof of it. The conjecture was a basic
and important part of Adams’ work on J(X). Quillen turned it into an obstruction problem (Step I, III
below), then used Brauer lifting to construct (Step II) a map BGL(k)→ BU which turns out to be a mod
ℓ cohomology equivalence for every prime ℓ , p (Step IV), rendering the obstruction problem trivial.

We present this section as “motivation and context” for the work discussed in the rest of this paper.
It is optional, but we hope it is interesting to see the evolution of ideas, especially with hindsight.

5.1. The conjecture and a reformulation. Let X be a finite CW complex. The stable pointed spher-
ical fibrations over X form a monoid under fiberwise smashing, the group completion of which we
write Sph(X). Now, for any vector bundle over X, its fiberwise one-point compactification is a pointed
spherical fibration. This induces a homomorphism J : KO(X) → Sph(X). One similarly obtains a map
J : KU(X)→ Sph(X).

Conjecture 5.1 (The Adams conjecture). Let K denote either real or complex K-theory. If X is a finite
CW complex, k is an integer, and E ∈ K(X), then there exists an integer n ≥ 0 such that

knJ(ΨkE − E) = 0. (5.2)

Since Ψa ◦ Ψb = Ψab, it suffices to check the cases where k is a prime p.

Remark 5.3. In his original paper, Adams proves the real conjecture in the case that E is a linear
combination of line and plane bundles, and in the case that X = S 2n and E underlies a complex bundle.

With the right machinery, we can give a convenient reformulation of the Adams conjecture. It is con-
ceptually straightforward: one looks at induced maps on classifying spaces and interprets Equation (5.2)
as the nullity of their composition after p-localization, for every p. We spell this out for the J map.

Proposition 5.4. Let F(n) denote the monoid of based homotopy equivalences S n → S n. Consider
the map O(n) → F(n) which sends a matrix to the one-point compactification of the linear isometry
Rn → Rn which it describes. In the colimit, we get a map BO → BF. The space BF classifies stable
spherical fibrations, i.e. [X, BF] � Sph(X), and the map BO → BF represents J : KO(X) → Sph(X).
Similarly in the complex case, there is a map BU → BF representing J : KU(X)→ Sph(X).

Conjecture 5.5. Let B denote either BO or BU. For every prime p, the composite

B B BF BF[p−1]Ψp−1 J (5.6)

Is nullhomotopic.

5.2. Sketch proof. Conjecture 5.5 is equivalent to the Adams conjecture. Quillen proves it in [Qui71].
We shall now sketch the proof for B = BU following his argument, breaking it into four steps.

Step I. First one proves the Adams conjecture for complex bundles whose structural group may
be reduced to a finite group. Those are the bundles E ∈ KU(X) such that for some finite group G
and principal G-bundle P, the bundle E lies in the image of the map RC(G) → KU(X) induced by
V 7→ P ×G V .

This proof has two parts. Let G denote a finite group. First, one observes the corollary to the Brauer
induction theorem [Ser77, p. 11] that every element of RC(G) is an integral linear combination of repre-
sentations induced by one-dimensional representations of subgroups of G. Second, one extends Adams’
proof of his conjecture for combinations of real line and plane bundles [c.f. Remark 5.3] to combinations
of bundles associated to one and two dimensional real representations of subgroups of G. Specializing
to the complex case and considering the first fact, we have our proof.

Step II. We next construct a map α : BGL(k) → BU that will ferry the rest of the proof. Let
αn,q : BGLn(kq)→ BU denote the Brauer lifted map [c.f. §4.2] obtained from the standard representation
GLn(kq) → GLn(kq), i.e. the identity map. These maps αn,q are compatible in n and q, and we define α
to be their colimit as n, q→ ∞.
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Step III. Let µ denote the composition (5.6). One now shows that µ ◦ α is nullhomotopic. It suffices
to show that µ ◦ α restricted to any finite skeleton is nullhomotopic, since the finiteness of BF[p−1]’s
homotopy groups kills the relevant lim1 term. This occurs by virtue of Brauer lifting: if X is any finite
skeleton, then the restriction of µ ◦ α to X classifies a bundle whose structural group may be reduced to
some BGLn(kq). It is therefore nullhomotopic by the result of Step I.

Step IV. The heart of Quillen’s paper is his demonstration that α : BGL(k) → BU induces a mod ℓ
homology isomorphism for every prime ℓ , p. This completes the proof for the following reason. The
nullity of µ ◦ α gives rise to a homotopy commutative diagram

BGL(k) BU Cα

BF[p−1]

α

µ
β

We want to show that µ and thus β is nullhomotopic. Since the obstructions to nullhomotoping β are
detected by Hn(Cα, πnBF[p−1]), it suffices to show that these groups are trivial. Note that πnBF[p−1]
has order coprime to p, and if α is a homology equivalence with coefficients in this group, then the
cofiber long exact sequence yields Hn(Cα, πnBF[p−1]) = 0.

The proof that α is a mod ℓ homology equivalence pursues a basic analogy between diagonal
matrices in GLnkq and maximal torii in U(n). Recall the isomorphism H∗BU(n) ∼−→ (H∗BT n)Σn �
Zℓ[σ1, . . . , σn], where T n ≤ U(n) denotes the diagonal matrices and σi is the i-th elementary symmetric
polynomial on n copies of the universal first Chern class. One begins by showing that the restriction map
defines an injection

H∗BGLn(Fq) ↪→ (H∗BDiagn)Σn � Zℓ[σ′1, . . . , σ
′
n]. (5.7)

This is proven in [Qui71, Theorem 4.3]. Here, Diagn ≤ GLnFq is the subgroup of diagonal matrices and
σ′i is the i-th elementary symmetric polynomial on the n copies of the indeterminate in H∗BDiag1 �
Zℓ[x].

Next we pass to the colimit in kq. Injectivity in (5.7) holds in the limit, so we have maps

H∗BU(n)
α∗n
−−→ H∗BGLn(k) ↪→ (H∗BDiagn)Σn � Zℓ[σ′1, . . . , σ

′
n].

By construction, the composite maps each σi to σ′i , hence it is an isomorphism. Thus the injection is an
isomorphism, and then α∗n must be too. We obtain the desired isomorphism in the colimit in n.
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6. The Space FΨq

For the Adams conjecture, we Brauer lifted the standard k-representations of GLn(kq) for every n and
q to maps αn,q : BGLn(kq) → BU and obtained a mod ℓ homology equivalence α : BGL(k) → BU in
the colimit. We may perfectly well fix q instead and ask about the colimiting map αq : BGL(kq)→ BU.
This is no longer an equivalence, but there is something to be said: the standard k-representations extend
the standard kq-ones, hence by Proposition 4.3 every Brauer lifted component map αn,q is Ψq-homotopy
invariant. Then as one might in ordinary algebra, we would like to think of αq as a map

θ : BGL(kq)→ FΨq

For some “space of Ψq-homotopy fixed points” FΨq. As we review in this section, this is possible with
the right machinery, and we conclude by constructing θ. It is a remarkable theorem that θ is an integral
homology equivalence; we will use this fact to compute the K-theory of finite fields in §7. Its difficult
proof can be found in [Qui72].

We first define the space FΨq. Recall that we briefly reviewed the representation of operations on K-
theory in §3.1. It will be useful to understand FΨq as both the homotopy fixed points of Ψq : BU → BU
and as the homotopy fiber of the map Ψq − 1 : BU → BU. These are general constructions with various
properties, but we will not mull over details. When we invoke properties of either the homotopy fixed
points or fiber, we will indicate so. A good reference is [May99].

Definition 6.1 (As homotopy fixed points). Denote by ∆ : BU I → BU ×BU the map which takes a path
to its endpoints. Define the space FΨq as the pullback

FΨq //

��

BU I

△

��
BU id ×Ψq

// BU × BU

Thus, FΨq consists of pairs (x, γ), where x ∈ BU and γ ∈ BU I , such that γ(0) = x and γ(1) = Ψq(x).

Proposition 6.2. The space FΨq is a homotopy fiber of Ψq − 1 : BU → BU.

Proof. Suppose as given a baspoint b ∈ BU. Let d : BU × BU → BU represent the difference operation
on K̃. Define m : BU I → BU I ×BU {b} to send a path p to the path t 7→ d(p(t), p(1)) joining d∆(p) to b.
Lastly define n : BU I → BU I ×BU b→ BU to take a path p to its start p(0).

In representing operations on K̃ as endomorphisms of BU, we would like to treat b as the “zero
element.” Using the homotopy extension property, we may choose our representatives for Ψq : BU →
BU and d : BU × BU → BU so that d(x, x) = b, d(x, b) = x, and Ψq(b) = b. Altogether we get the
following commutative diagram.

FΨq BU I BU I ×BU {b}

BU BU × BU BUid×Ψq d

n∆

m

See that the vertical maps are all fibrations with the same fiber ΩBU. It follows that FΨq is homotopy
equivalent to the pullback of d ◦ (id × Ψq) and n, which is what we wanted to show. □

We can immediately make a simple computation.

Proposition 6.3. FΨq is simple and for i > 0 we have π2i(FΨq) = 0 and π2i−1(FΨq) = Z/(qi − 1).

Proof. As in Proposition 6.2, the space FΨq is a homotopy fiber, hence its homotopy groups fit into a
long exact sequence

· · · π jBU π jBU π j−1FΨq · · ·
(Ψq−1)∗

Bott Periodicity implies that π2 j−1(BU) = 0 and π2 j(BU) = Z. Also using Bott Periodicity, one can show
that (Ψq − 1)∗ acts as multiplication by q j − 1. From this the groups π jFΨq are determined.
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Next we show that FΨq is simple. Recall that a space X is simple if π1(X) is abelian and acts trivially
on higher πi(X). The above computation shows that π1(FΨq) is abelian. As for its action on higher
homotopy, note that (by general theory of fibrations) the action of π1(FΨq) on πi(FΨq) arises from that
of π1(BU) on πi(BU). Since BU is simply connected, this action is trivial, hence FΨq is simple. □

6.1. Producing maps BG → FΨq. Now we will reinterpret our Ψq-invariant map BGL(kq)→ BU as a
map BGL(kq)→ FΨq. We can do this generally; let G be a finite group and let E be a kq-representation
of G. As in Proposition 4.3, the extension E ∈ Rk(G) gives rise to a class in [BG, BU]Ψ

q
. Now as FΨq

is the homotopy fixed point space of Ψq, one might expect that if there are no “complicated” maps
X → BU for a space X, then there should be an equivalence [X, BU]Ψ

q
� [X, FΨq]. As in the next two

propositions, this intuition is almost correct and the hypothesis is fulfilled in the case G = GLn(kq) we
are interested in.

Proposition 6.4. Recall that FΨq is a pullback and we denoted by ϕ the evident map FΨq → BU. If a
space X is such that [X,ΩBU] = 0, then ϕ∗ : [X, FΨq]→ [X, BU]Ψ

q
is an isomorphism.

Proof. For surjectivity, see that by the definition as a pullback, a map f : X → BU together with a
homotopy equivalence f ≃ Ψq f is the same data as a map g : X → FΨq such that ϕ ◦ g = f .

For injectivity, see that as a homotopy fiber, the space FΨq fits into the fiber sequence generated by
Ψq − 1 (c.f. [May99, §6])

· · · → ΩBU → FΨq ϕ
−→ BU

Ψq−1
−−−−→ BU,

And this induces the exact sequence of pointed sets

· · · → [X,ΩBU]→ [X, FΨq]
ϕ∗
−−→ [X, BU]

(Ψq−1)∗
−−−−−−→ [X, BU].

From this and our hypothesis that [X,ΩBU] is trivial, it is immediate that ϕ∗ is injective. □

Proposition 6.5. If G is a finite group, then [BG,ΩBU] = 0.

Proof. This is an application of the Atiyah-Segal completion theorem. Slightly more is said in [Qui72].
□

Definition 6.6 (Construction of θ). Let G = GLn(kq). Consider the maps

Rkq(GLn(kq)) [BGLn(kq), BU]Ψ
q
� [BGLn(kq), FΨq],

β ◦ (−)br

The isomorphism coming from the previous two propositions. Take θn : BGLn(kq) → FΨq to repre-
sent the image of the standard representation of GLn(kq) under the composite. These θn are compat-
ible with respect to the maps BGLm(kq) → BGLm+1(kq) induced by inclusions, hence assemble to a
map θ : BGL(kq) → FΨq. Furthermore, the Milnor exact sequence implies colimn[BGLn(kq), BU] �
[BGL(kq), BU], so this uniquely defines θ up to homotopy.

The essential fact is that θ is an integral equivalence. This is hard and calculational. We refer the
reader to [Qui72] for the proof.

Theorem 6.7. The map θ : BGL(kq)→ FΨq induces an integral homology isomorphism.
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7. The Plus Construction and Algebraic K-Theory

We have constructed an integral homology equivalence θ : BGL(kq)→ FΨq (Theorem 6.7) and now
ask what it does on homotopy groups. We might like to appeal to the classical Whitehead theorem6 and
say that θ is a homotopy equivalence. However, that does not apply to non-simply connected spaces,
and in any case these spaces have distinct fundamental groups with π1FΨq � (π1BGL(kq))ab. In a
dramatic turn of events, we can address all this in one go: there is a plus construction X 7→ X+ which
abelianizes π1BGL(kq) and preserves homology, and through this construction θ induces a homology
equivalence θ+ : BGL(kq)+ → FΨq since homology is preserved, and furthermore the generalized
Whitehead theorem applies to BGL(kq)+ to let us conclude that θ+ is a weak homotopy equivalence. We
will define the K-theory of kq as the homotopy of BGL(kq)+, so this equivalence lets us compute Kn(kq).

In what follows, all spaces are based CW complexes.

7.1. Acyclicity and the plus construction. An acyclic space is one with the homology of a point.
A map of connected spaces is called an acyclic map if it has acyclic homotopy fiber. Such maps are
equivalences in a strong sense, and are in particular integral homology equivalences. Our concern for
acyclic maps is tied to their role in the following construction. Recall that a group is called perfect if it
is equal to its commutator, i.e. if it has trivial abelianization.

Definition 7.1 (Relative plus construction). Let X be a connected space and let N ≤ π1X be perfect and
normal. A plus construction relative to N is an acyclic map f : X → Y such that ker f∗ = N.

As in the following theorem, plus constructions exist, are unique up to homotopy, and are universal
among maps killing their designated subgroup. One may obtain a plus construction by attaching 2-cells
to alter π1 and then attaching 3-cells to undo any effects the 2-cells had on homology. This was first
devised in some form by Kervaire in [Ker69] for unrelated reasons.

Theorem 7.2. Let N denote a perfect normal subgroup of π1(X).
(1) There is a plus construction X → Y relative to N.
(2) Let f : X → Y be a plus construction relative to N. If g : X → Z is any map such that g∗(N) = 0,

then there is a map h : Y → Z through which f factors, and h is unique up to pointed homotopy.
(3) In particular, if g is another plus construction relative to N, then h is a homotopy equivalence.

Thus plus constructions are unique up to homotopy.

Every group G has a maximal perfect subgroup P ≤ G, its perfect radical, and this subgroup P is
always normal. We are most interested in this subgroup. We define the plus construction of a space X
to be its plus construction relative to the perfect radical of π1(X) and denote the resulting space by X+.
Then the following is clear from (2) above and the fact that abelian groups have trivial perfect radicals.

Corollary 7.3. Let f : X → X+ be a plus construction of X. If a space Z has an abelian fundamental
group, then f∗ : [X+,Z] → [X,Z] is bijective. Given g : X → Z, we denote by g+ a corresponding map
X+ → Z.

7.2. The K-theory of finite fields. For n > 0, Quillen defined Kn(kq) to be the homotopy of BGL(kq)+:

Kn(kq) := πnBGL(kq)+.

The perfect radical of GL(kq) is the subgroup E(kq) of elementary matrices,7 hence K1(kq) = GL(kq)/E(kq)
which agrees with the classical definition of K1. There is motivation for this definition coming from mul-
tiple directions, especially the homology equivalence BGL(k) → BU constructed in Quillen’s proof of
the Adams conjecture. The motivation is an interesting subject, but a bit involved. We refer the reader to
[Cla] and [Qui70] for more on this.

Now we put everything together to compute Kn(kq). Noting Corollary 7.3, the map θ : BGL(kq) →
FΨq factors through the plus construction (which exists by Theorem 7.2), yielding a map

θ+ : BGL(kq)+ → FΨq.

6There are a few statements called the Whitehead theorem. Here we refer to the following: “if a map of simply-connected CW
complexes is an integral homology equivalence, then it is a weak homotopy equivalence.”
7The elementary matrices are those differing from the identity matrix by exactly one off-diagonal entry.
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Plus constructions are acyclic and so preserve homology. Since θ is an integral homology equivalence
(Theorem 6.7), it follows that θ+ is as well. Passing to the plus construction has, first of all, equalized the
fundamental groups of our spaces. But we can say more: the space BGL(kq)+ is an H-space,8 in particular
it is simple, and we know that FΨq is simple also (Proposition 6.3). We can invoke the following.

Theorem 7.4 (Generalized Whitehead theorem). An integral homology equivalence between simple
spaces is a weak homotopy equivalence.

Therefore θ+ is a weak homotopy equivalence. We computed the homotopy groups of FΨq (Proposi-
tion 6.3), giving us those of BGL(kq)+. The K-theory of finite fields is determined.

Corollary 7.5. For i > 0 we have K2i(kq) = 0 and K2i−1(kq) � Z/(qi − 1).

8One can induce the H-space structure by defining a direct sum operation on GL(kq). See also [Cam].
12
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